
JQuery Documentation

Table of Contents

Core
jQuery.holdReady
jQuery.when
jQuery.sub
jQuery.noConflict
jQuery
jQuery
jQuery

Selectors
focus
selected
checked
disabled
enabled
file
button
reset
image
submit
checkbox
radio
password
text
input
only-child
last-child
first-child
nth-child
attributeContainsPrefix
attributeContainsWord
attributeMultiple
attributeContains
attributeEndsWith
attributeStartsWith
attributeNotEqual
attributeEquals
attributeHas
visible
hidden
parent
has
empty
contains
animated
header
lt
gt
eq
odd
even
not
last
first
next siblings
next adjacent
child
descendant
multiple
all
class
element
id

Traversing
has
parentsUntil
prevUntil
nextUntil
each
first
last
slice
end
andSelf
siblings
prevAll
prev
parents
parent
offsetParent
nextAll
next
find
contents
closest
closest
children
add
not
map
is
eq
filter

Attributes
removeProp
prop
prop
val
val
html
html
toggleClass
removeClass
hasClass
removeAttr
attr
attr
addClass

CSS
jQuery.cssHooks
outerWidth
outerHeight
innerWidth
innerHeight
width
width
height
height
scrollLeft
scrollLeft
scrollTop
scrollTop
position
offset
offset
css
css
toggleClass: See Attributes - toggleClass
removeClass: See Attributes - removeClass
hasClass: See Attributes - hasClass
addClass: See Attributes - addClass

Manipulation

removeProp: See Attributes - removeProp
prop: See Attributes - prop
prop: See Attributes - prop
outerWidth: See CSS - outerWidth
outerHeight: See CSS - outerHeight
innerWidth: See CSS - innerWidth
innerHeight: See CSS - innerHeight
width: See CSS - width
width: See CSS - width
height: See CSS - height
height: See CSS - height
scrollLeft: See CSS - scrollLeft
scrollLeft: See CSS - scrollLeft
scrollTop: See CSS - scrollTop
scrollTop: See CSS - scrollTop
position: See CSS - position
offset: See CSS - offset
offset: See CSS - offset
css: See CSS - css
css: See CSS - css
unwrap
detach
clone
remove
empty
replaceAll
replaceWith
wrapInner
wrapAll
wrap
insertBefore
before
insertAfter
after
prependTo
prepend
appendTo
append
val: See Attributes - val
val: See Attributes - val
text
text
html: See Attributes - html
html: See Attributes - html
toggleClass: See Attributes - toggleClass
removeClass: See Attributes - removeClass
hasClass: See Attributes - hasClass
removeAttr: See Attributes - removeAttr
attr: See Attributes - attr
attr: See Attributes - attr
addClass: See Attributes - addClass

Data
jQuery.hasData
jQuery.removeData
jQuery.data
jQuery.data
jQuery.dequeue
jQuery.queue
jQuery.queue
clearQueue
removeData
data
data
dequeue
queue
queue

Forms
submit
select

change
blur
focus
serializeArray
serialize
jQuery.param
val: See Attributes - val
val: See Attributes - val

Events
toggle
event.namespace
undelegate
delegate
jQuery.proxy
focusout
focusin
event.isImmediatePropagationStopped
event.stopImmediatePropagation
event.isPropagationStopped
event.stopPropagation
event.isDefaultPrevented
event.preventDefault
event.timeStamp
event.result
event.which
event.pageY
event.pageX
event.currentTarget
event.relatedTarget
event.data
event.target
event.type
keydown
scroll
resize
keyup
keypress
submit: See Forms - submit
select: See Forms - select
change: See Forms - change
blur: See Forms - blur
focus: See Forms - focus
mousemove
hover
hover
mouseleave
mouseenter
mouseout
mouseover
dblclick
click
mouseup
mousedown
error
unload
load
ready
die
die
live
triggerHandler
trigger
one
unbind
bind

Deferred Object
deferred.pipe
deferred.always
promise

deferred.promise
jQuery.when: See Core - jQuery.when
deferred.resolveWith
deferred.rejectWith
deferred.fail
deferred.done
deferred.then
deferred.reject
deferred.isRejected
deferred.isResolved
deferred.resolve

Effects
fadeToggle
jQuery.fx.interval
delay
jQuery.fx.off
clearQueue: See Data - clearQueue
dequeue: See Data - dequeue
queue: See Data - queue
queue: See Data - queue
stop
animate
fadeTo
fadeOut
fadeIn
slideToggle
slideUp
slideDown
toggle
hide
show

Ajax
jQuery.ajaxPrefilter
ajaxComplete
serializeArray: See Forms - serializeArray
serialize: See Forms - serialize
jQuery.ajaxSetup
ajaxSuccess
ajaxStop
ajaxStart
ajaxSend
ajaxError
jQuery.post
jQuery.getScript
jQuery.getJSON
jQuery.get
load
jQuery.ajax
jQuery.param: See Forms - jQuery.param

Miscellaneous
each: See Traversing - each
toArray
index
removeData: See Data - removeData
data: See Data - data
data: See Data - data
get
size
jQuery.noConflict: See Core - jQuery.noConflict
jQuery.param: See Forms - jQuery.param

Dimensions
outerWidth: See CSS - outerWidth
outerHeight: See CSS - outerHeight
innerWidth: See CSS - innerWidth
innerHeight: See CSS - innerHeight
width: See CSS - width
width: See CSS - width
height: See CSS - height
height: See CSS - height

Offset
offsetParent: See Traversing - offsetParent
scrollLeft: See CSS - scrollLeft
scrollLeft: See CSS - scrollLeft
scrollTop: See CSS - scrollTop
scrollTop: See CSS - scrollTop
position: See CSS - position
offset: See CSS - offset
offset: See CSS - offset

Utilities
jQuery.now
jQuery.parseXML
jQuery.type
jQuery.isWindow
jQuery.parseJSON
jQuery.proxy: See Events - jQuery.proxy
jQuery.contains
jQuery.noop
jQuery.globalEval
jQuery.isXMLDoc
jQuery.removeData: See Data - jQuery.removeData
jQuery.data: See Data - jQuery.data
jQuery.data: See Data - jQuery.data
jQuery.dequeue: See Data - jQuery.dequeue
jQuery.queue: See Data - jQuery.queue
jQuery.queue: See Data - jQuery.queue
clearQueue: See Data - clearQueue
jQuery.isEmptyObject
jQuery.isPlainObject
dequeue: See Data - dequeue
queue: See Data - queue
queue: See Data - queue
jQuery.browser
jQuery.browser.version
jQuery.trim
jQuery.isFunction
jQuery.isArray
jQuery.unique
jQuery.merge
jQuery.inArray
jQuery.map
jQuery.makeArray
jQuery.grep
jQuery.extend
jQuery.each
jQuery.boxModel
jQuery.support

Plugin Authoring

Added in version 1.6

Added in version 1.5

Core

jQuery.holdReady

Holds or releases the execution of jQuery's ready event.

jQuery.holdReady(hold):undefined

hold:Boolean Indicates whether the ready hold is being requested or released

The $.holdReady() method allows the caller to delay jQuery's ready event. This advanced feature would typically be used by dynamic script
loaders that want to load additional JavaScript such as jQuery plugins before allowing the ready event to occur, even though the DOM may be
ready. This method must be called early in the document, such as in the <head> immediately after the jQuery script tag. Calling this method
after the ready event has already fired will have no effect.

To delay the ready event, first call $.holdReady(true). When the ready event should be released to execute, call $.holdReady(false). Note that
multiple holds can be put on the ready event, one for each $.holdReady(true) call. The ready event will not actually fire until all holds have
been released with a corresponding $.holdReady(false) and the normal document ready conditions are met. (See ready for more information.)

Example 1: Delay the ready event until a custom plugin has loaded.

Javascript

$.holdReady(true);
$.getScript("myplugin.js", function() {
 $.holdReady(false);
});

jQuery.when

Provides a way to execute callback functions based on one or more objects, usually Deferred objects that represent asynchronous events.

jQuery.when(deferreds):Promise

deferreds:Deferred One or more Deferred objects, or plain JavaScript objects.

If a single Deferred is passed to jQuery.when, its Promise object (a subset of the Deferred methods) is returned by the method. Additional
methods of the Promise object can be called to attach callbacks, such as deferred.then. When the Deferred is resolved or rejected, usually by
the code that created the Deferred originally, the appropriate callbacks will be called. For example, the jqXHR object returned by jQuery.ajax
is a Deferred and can be used this way:

$.when($.ajax("test.aspx")).then(function(ajaxArgs){
 alert(ajaxArgs[1]); /* ajaxArgs is ["success", statusText, jqXHR] */
});

If a single argument is passed to jQuery.when and it is not a Deferred, it will be treated as a resolved Deferred and any doneCallbacks attached
will be executed immediately. The doneCallbacks are passed the original argument. In this case any failCallbacks you might set are never called
since the Deferred is never rejected. For example:

$.when({ testing: 123 }).done(
 function(x){ alert(x.testing); } /* alerts "123" */
);

In the case where multiple Deferred objects are passed to jQuery.when, the method returns the Promise from a new "master" Deferred object
that tracks the aggregate state of all the Deferreds it has been passed. The method will resolve its master Deferred as soon as all the Deferreds
resolve, or reject the master Deferred as soon as one of the Deferreds is rejected. If the master Deferred is resolved, it is passed the resolved
values of all the Deferreds that were passed to jQuery.when. For example, when the Deferreds are jQuery.ajax() requests, the arguments will
be the jqXHR objects for the requests, in the order they were given in the argument list.

In the multiple-Deferreds case where one of the Deferreds is rejected, jQuery.when immediately fires the failCallbacks for its master Deferred.
Note that some of the Deferreds may still be unresolved at that point. If you need to perform additional processing for this case, such as
canceling any unfinished ajax requests, you can keep references to the underlying jqXHR objects in a closure and inspect/cancel them in the
failCallback.

Example 1: Execute a function after two ajax requests are successful. (See the jQuery.ajax() documentation for a complete description of success
and error cases for an ajax request).

Added in version 1.5

Javascript

$.when($.ajax("/page1.php"), $.ajax("/page2.php")).done(function(a1, a2){
 /* a1 and a2 are arguments resolved for the
 page1 and page2 ajax requests, respectively */
 var jqXHR = a1[2]; /* arguments are ["success", statusText, jqXHR] */
 if (/Whip It/.test(jqXHR.responseText)) {
 alert("First page has 'Whip It' somewhere.");
 }
});

Example 2: Execute the function myFunc when both ajax requests are successful, or myFailure if either one has an error.

Javascript

$.when($.ajax("/page1.php"), $.ajax("/page2.php"))
 .then(myFunc, myFailure);

jQuery.sub

Creates a new copy of jQuery whose properties and methods can be modified without affecting the original jQuery object.

jQuery.sub():jQuery

There are two specific use cases for which jQuery.sub() was created. The first was for providing a painless way of overriding jQuery methods
without completely destroying the original methods and another was for helping to do encapsulation and basic namespacing for jQuery plugins.

Note that jQuery.sub() doesn't attempt to do any sort of isolation - that's not its intention. All the methods on the sub'd version of jQuery will
still point to the original jQuery (events bound and triggered will still be through the main jQuery, data will be bound to elements through the
main jQuery, Ajax queries and events will run through the main jQuery, etc.).

Note that if you're looking to use this for plugin development you should first strongly consider using something like the jQuery UI widget
factory which manages both state and plugin sub-methods. Some examples of using the jQuery UI widget factory to build a plugin.

The particular use cases of this method can be best described through some examples.

Example 1: Adding a method to a jQuery sub so that it isn't exposed externally:

Javascript

 (function(){
 var sub$ = jQuery.sub();

 sub$.fn.myCustomMethod = function(){
 return 'just for me';
 };

 sub$(document).ready(function() {
 sub$('body').myCustomMethod() // 'just for me'
 });
 })();

 typeof jQuery('body').myCustomMethod // undefined

Example 2: Override some jQuery methods to provide new functionality.

Added in version 1.0

Javascript

(function() {
 var myjQuery = jQuery.sub();

 myjQuery.fn.remove = function() {
 // New functionality: Trigger a remove event
 this.trigger("remove");

 // Be sure to call the original jQuery remove method
 return jQuery.fn.remove.apply(this, arguments);
 };

 myjQuery(function($) {
 $(".menu").click(function() {
 $(this).find(".submenu").remove();
 });

 // A new remove event is now triggered from this copy of jQuery
 $(document).bind("remove", function(e) {
 $(e.target).parent().hide();
 });
 });
})();

// Regular jQuery doesn't trigger a remove event when removing an element
// This functionality is only contained within the modified 'myjQuery'.

Example 3: Create a plugin that returns plugin-specific methods.

Javascript

(function() {
 // Create a new copy of jQuery using sub()
 var plugin = jQuery.sub();

 // Extend that copy with the new plugin methods
 plugin.fn.extend({
 open: function() {
 return this.show();
 },
 close: function() {
 return this.hide();
 }
 });

 // Add our plugin to the original jQuery
 jQuery.fn.myplugin = function() {
 this.addClass("plugin");

 // Make sure our plugin returns our special plugin version of jQuery
 return plugin(this);
 };
})();

$(document).ready(function() {
 // Call the plugin, open method now exists
 $('#main').myplugin().open();

 // Note: Calling just $("#main").open() won't work as open doesn't exist!
});

jQuery.noConflict

Relinquish jQuery's control of the $ variable.

jQuery.noConflict(removeAll):Object

removeAll:Boolean (optional) A Boolean indicating whether to remove all jQuery variables from the global scope
(including jQuery itself).

Many JavaScript libraries use $ as a function or variable name, just as jQuery does. In jQuery's case, $ is just an alias for jQuery, so all
functionality is available without using $. If we need to use another JavaScript library alongside jQuery, we can return control of $ back to the
other library with a call to $.noConflict():

<script type="text/javascript" src="other_lib.js"></script>

<script type="text/javascript" src="jquery.js"></script>
<script type="text/javascript">
 $.noConflict();
 // Code that uses other library's $ can follow here.
</script>

This technique is especially effective in conjunction with the .ready() method's ability to alias the jQuery object, as within callback passed to
.ready() we can use $ if we wish without fear of conflicts later:

<script type="text/javascript" src="other_lib.js"></script>
<script type="text/javascript" src="jquery.js"></script>
<script type="text/javascript">
 $.noConflict();
 jQuery(document).ready(function($) {
 // Code that uses jQuery's $ can follow here.
 });
 // Code that uses other library's $ can follow here.
</script>

If necessary, we can free up the jQuery name as well by passing true as an argument to the method. This is rarely necessary, and if we must do
this (for example, if we need to use multiple versions of the jQuery library on the same page), we need to consider that most plug-ins rely on the
presence of the jQuery variable and may not operate correctly in this situation.

Example 1: Maps the original object that was referenced by $ back to $.

Javascript

jQuery.noConflict();
// Do something with jQuery
jQuery("div p").hide();
// Do something with another library's $()
$("content").style.display = 'none';

Example 2: Reverts the $ alias and then creates and executes a function to provide the $ as a jQuery alias inside the functions scope. Inside the
function the original $ object is not available. This works well for most plugins that don't rely on any other library.

Javascript

jQuery.noConflict();
(function($) {
 $(function() {
 // more code using $ as alias to jQuery
 });
})(jQuery);
// other code using $ as an alias to the other library

Example 3: You can chain the jQuery.noConflict() with the shorthand ready for a compact code.

Javascript

jQuery.noConflict()(function(){
 // code using jQuery
});
// other code using $ as an alias to the other library

Example 4: Creates a different alias instead of jQuery to use in the rest of the script.

Javascript

var j = jQuery.noConflict();
// Do something with jQuery
j("div p").hide();
// Do something with another library's $()
$("content").style.display = 'none';

Example 5: Completely move jQuery to a new namespace in another object.

Javascript

var dom = {};
dom.query = jQuery.noConflict(true);

Added in version 1.4

Results

// Do something with the new jQuery
dom.query("div p").hide();
// Do something with another library's $()
$("content").style.display = 'none';
// Do something with another version of jQuery
jQuery("div > p").hide();

jQuery

Accepts a string containing a CSS selector which is then used to match a set of elements.

jQuery():jQuery

In the first formulation listed above, jQuery() â€” which can also be written as $() â€” searches through the DOM for any elements that match
the provided selector and creates a new jQuery object that references these elements:

$('div.foo');

Selector Context

By default, selectors perform their searches within the DOM starting at the document root. However, an alternate context can be given for the
search by using the optional second parameter to the $() function. For example, to do a search within an event handler, the search can be
restricted like so:

$('div.foo').click(function() {
 $('span', this).addClass('bar');
});

When the search for the span selector is restricted to the context of this, only spans within the clicked element will get the additional class.

Internally, selector context is implemented with the .find() method, so $('span', this) is equivalent to $(this).find('span').

Using DOM elements

The second and third formulations of this function create a jQuery object using one or more DOM elements that were already selected in some
other way. A common use of this facility is to call jQuery methods on an element that has been passed to a callback function through the
keyword this:

$('div.foo').click(function() {
 $(this).slideUp();
});

This example causes elements to be hidden with a sliding animation when clicked. Because the handler receives the clicked item in the this
keyword as a bare DOM element, the element must be passed to the $() function before applying jQuery methods to it.

XML data returned from an Ajax call can be passed to the $() function so individual elements of the XML structure can be retrieved using
.find() and other DOM traversal methods.

$.post('url.xml', function(data) {
 var $child = $(data).find('child');
})

Cloning jQuery Objects

When a jQuery object is passed to the $() function, a clone of the object is created. This new jQuery object references the same DOM elements
as the initial one.

Returning an Empty Set

As of jQuery 1.4, calling the jQuery() method with no arguments returns an empty jQuery set (with a .length property of 0). In previous
versions of jQuery, this would return a set containing the document node.

Example 1: Find all p elements that are children of a div element and apply a border to them.

Javascript

 $("div > p").css("border", "1px solid gray");

Added in version 1.4

HTML

<p>one</p> <div><p>two</p></div> <p>three</p>

Example 2: Find all inputs of type radio within the first form in the document.

Javascript

$("input:radio", document.forms[0]);

Example 3: Find all div elements within an XML document from an Ajax response.

Javascript

$("div", xml.responseXML);

Example 4: Set the background color of the page to black.

Javascript

$(document.body).css("background", "black");

Example 5: Hide all the input elements within a form.

Javascript

$(myForm.elements).hide()

jQuery

Creates DOM elements on the fly from the provided string of raw HTML.

jQuery(html, props):jQuery

html:String A string defining a single, standalone, HTML element (e.g. <div/> or <div></div>).
props:Object An map of attributes, events, and methods to call on the newly-created element.

Creating New Elements

If a string is passed as the parameter to $(), jQuery examines the string to see if it looks like HTML (i.e., it has <tag ... > somewhere within
the string). If not, the string is interpreted as a selector expression, as explained above. But if the string appears to be an HTML snippet, jQuery
attempts to create new DOM elements as described by the HTML. Then a jQuery object is created and returned that refers to these elements.
You can perform any of the usual jQuery methods on this object:

$('<p id="test">My new text</p>').appendTo('body');

If the HTML is more complex than a single tag without attributes, as it is in the above example, the actual creation of the elements is handled
by the browser's innerHTML mechanism. In most cases, jQuery creates a new <div> element and sets the innerHTML property of the element to
the HTML snippet that was passed in. When the parameter has a single tag, such as $('<imgÂ />') or $('<a>'), jQuery creates the element
using the native JavaScript createElement() function.

When passing in complex HTML, some browsers may not generate a DOM that exactly replicates the HTML source provided. As mentioned,
we use the browser's .innerHTML property to parse the passed HTML and insert it into the current document. During this process, some
browsers filter out certain elements such as <html>, <title>, or <head> elements. As a result, the elements inserted may not be representative of
the original string passed.

Filtering isn't however just limited to these tags. For example, Internet Explorer prior to version 8 will also convert all href properties on links
to absolute URLs, and Internet Explorer prior to version 9 will not correctly handle HTML5 elements without the addition of a separate
compatibility layer.

To ensure cross-platform compatibility, the snippet must be well-formed. Tags that can contain other elements should be paired with a closing
tag:

$('');

Alternatively, jQuery allows XML-like tag syntax (with or without a space before the slash):

Added in version 1.0

$('<a/>');

Tags that cannot contain elements may be quick-closed or not:

$('');
$('<input>');

When passing HTML to jQuery(), please also note that text nodes are not treated as DOM elements. With the exception of a few methods (such
as .content()), they are generally otherwise ignored or removed. E.g:

var el = $('1
2
3'); // returns [
, "2",
]
el = $('1
2
3 >'); // returns [
, "2",
, "3 >"]

This behaviour is expected.

As of jQuery 1.4, the second argument to jQuery() can accept a map consisting of a superset of the properties that can be passed to the .attr()
method. Furthermore, any event type can be passed in, and the following jQuery methods can be called: val, css, html, text, data, width, height,
or offset. The name "class" must be quoted in the map since it is a JavaScript reserved word, and "className" cannot be used since it is not the
correct attribute name.

Note: Internet Explorer will not allow you to create an input or button element and change its type; you must specify the type using '<input
type="checkbox" />' for example. A demonstration of this can be seen below:

Unsupported in IE:

$('<input />', {
 type: 'text',
 name: 'test'
}).appendTo("body");

Supported workaround:

$('<input type="text" />').attr({
 name: 'test'
}).appendTo("body");

Example 1: Create a div element (and all of its contents) dynamically and append it to the body element. Internally, an element is created and its
innerHTML property set to the given markup.

Javascript

$("<div><p>Hello</p></div>").appendTo("body")

Example 2: Create some DOM elements.

Javascript

$("<div/>", {
 "class": "test",
 text: "Click me!",
 click: function(){
 $(this).toggleClass("test");
 }
}).appendTo("body");

jQuery

Binds a function to be executed when the DOM has finished loading.

jQuery(callback):jQuery

callback:Function The function to execute when the DOM is ready.

This function behaves just like $(document).ready(), in that it should be used to wrap other $() operations on your page that depend on the
DOM being ready. While this function is, technically, chainable, there really isn't much use for chaining against it.

Example 1: Execute the function when the DOM is ready to be used.

Javascript

$(function(){
 // Document is ready
 });

Example 2: Use both the shortcut for $(document).ready() and the argument to write failsafe jQuery code using the $ alias, without relying on the
global alias.

Javascript

jQuery(function($) {
 // Your code using failsafe $ alias here...
 });

Added in version 1.6

Added in version 1.0

Selectors

focus $(":focus")

Selects element if it is currently focused.

$(":focus")

As with other pseudo-class selectors (those that begin with a ":"), it is recommended to precede :focus with a tag name or some other selector;
otherwise, the universal selector ("*") is implied. In other words, the bare $(':focus') is equivalent to $('*:focus'). If you are looking for the
currently focused element, $(document.activeElement) will retrieve it without having to search the whole DOM tree.

Example 1: Adds the focused class to whatever element has focus

Javascript

$("*").live("focus blur", function(e) {
 var el = $(this);
 setTimeout(function() {
 el.toggleClass("focused", el.is(":focus"));
 }, 0);
});

CSS

.focused {
 background: #abcdef;
}

HTML

<input tabIndex="1">
<input tabIndex="2">
<select tabIndex="3">
 <option>select menu</option>
</select>
<div tabIndex="4">
 a div
</div>

selected $(":selected")

Selects all elements that are selected.

$(":selected")

The :selected selector works for <option> elements. It does not work for checkboxes or radio inputs; use :checked for them.

Example 1: Attaches a change event to the select that gets the text for each selected option and writes them in the div. It then triggers the event
for the initial text draw.

Javascript

 $("select").change(function () {
 var str = "";
 $("select option:selected").each(function () {
 str += $(this).text() + " ";
 });
 $("div").text(str);
 })
 .trigger('change');

CSS

 div { color:red; }

Added in version 1.0

HTML

<select name="garden" multiple="multiple">

 <option>Flowers</option>
 <option selected="selected">Shrubs</option>
 <option>Trees</option>
 <option selected="selected">Bushes</option>

 <option>Grass</option>
 <option>Dirt</option>
 </select>
 <div></div>

checked $(":checked")

Matches all elements that are checked.

$(":checked")

The :checked selector works for checkboxes and radio buttons. For select elements, use the :selected selector.

Example 1: Finds all input elements that are checked.

Javascript

function countChecked() {
 var n = $("input:checked").length;
 $("div").text(n + (n <= 1 ? " is" : " are") + " checked!");
}
countChecked();
$(":checkbox").click(countChecked);

CSS

 div { color:red; }

HTML

<form>
 <p>
 <input type="checkbox" name="newsletter" checked="checked" value="Hourly" />

 <input type="checkbox" name="newsletter" value="Daily" />
 <input type="checkbox" name="newsletter" value="Weekly" />

 <input type="checkbox" name="newsletter" checked="checked" value="Monthly" />
 <input type="checkbox" name="newsletter" value="Yearly" />
 </p>
</form>
<div></div>

Example 2:

Javascript

$("input").click(function() {
 $("#log").html($(":checked").val() + " is checked!");
});

CSS

input, label { line-height: 1.5em; }

Added in version 1.0

Added in version 1.0

HTML

<form>
 <div>
 <input type="radio" name="fruit" value="orange" id="orange">
 <label for="orange">orange</label>
 </div>
 <div>
 <input type="radio" name="fruit" value="apple" id="apple">
 <label for="apple">apple</label>
 </div>
 <div>
 <input type="radio" name="fruit" value="banana" id="banana">
 <label for="banana">banana</label>
 </div>
 <div id="log"></div>
</form>

disabled $(":disabled")

Selects all elements that are disabled.

$(":disabled")

As with other pseudo-class selectors (those that begin with a ":") it is recommended to precede it with a tag name or some other selector;
otherwise, the universal selector ("*") is implied. In other words, the bare $(':disabled') is equivalent to $('*:disabled'), so
$('input:disabled') should be used instead.

Example 1: Finds all input elements that are disabled.

Javascript

$("input:disabled").val("this is it");

HTML

<form>

 <input name="email" disabled="disabled" />
 <input name="id" />
 </form>

enabled $(":enabled")

Selects all elements that are enabled.

$(":enabled")

As with other pseudo-class selectors (those that begin with a ":") it is recommended to precede it with a tag name or some other selector;
otherwise, the universal selector ("*") is implied. In other words, the bare $(':enabled') is equivalent to $('*:enabled'), so
$('input:enabled') should be used instead.

Example 1: Finds all input elements that are enabled.

Javascript

$("input:enabled").val("this is it");

HTML

<form>

 <input name="email" disabled="disabled" />
 <input name="id" />
 </form>

file $(":file")

Selects all elements of type file.

Added in version 1.0

Added in version 1.0

$(":file")

:file is equivalent to [type="file"]. As with other pseudo-class selectors (those that begin with a ":") it is recommended to precede it with a
tag name or some other selector; otherwise, the universal selector ("*") is implied. In other words, the bare $(':file') is equivalent to
$('*:file'), so $('input:file') should be used instead.

Example 1: Finds all file inputs.

Javascript

 var input = $("input:file").css({background:"yellow", border:"3px red solid"});
 $("div").text("For this type jQuery found " + input.length + ".")
 .css("color", "red");
 $("form").submit(function () { return false; }); // so it won't submit

CSS

 textarea { height:45px; }

HTML

<form>
 <input type="button" value="Input Button"/>
 <input type="checkbox" />

 <input type="file" />
 <input type="hidden" />
 <input type="image" />

 <input type="password" />
 <input type="radio" />
 <input type="reset" />

 <input type="submit" />
 <input type="text" />
 <select><option>Option<option/></select>

 <textarea></textarea>
 <button>Button</button>
 </form>
 <div>
 </div>

button $(":button")

Selects all button elements and elements of type button.

$(":button")

Example 1: Finds all button inputs.

Javascript

 var input = $(":button").css({background:"yellow", border:"3px red solid"});
 $("div").text("For this type jQuery found " + input.length + ".")
 .css("color", "red");
 $("form").submit(function () { return false; }); // so it won't submit

CSS

 textarea { height:45px; }

Added in version 1.0

HTML

<form>
 <input type="button" value="Input Button"/>
 <input type="checkbox" />

 <input type="file" />
 <input type="hidden" />
 <input type="image" />

 <input type="password" />
 <input type="radio" />
 <input type="reset" />

 <input type="submit" />
 <input type="text" />
 <select><option>Option<option/></select>

 <textarea></textarea>
 <button>Button</button>
 </form>
 <div>
 </div>

reset $(":reset")

Selects all elements of type reset.

$(":reset")

:reset is equivalent to [type="reset"]

Example 1: Finds all reset inputs.

Javascript

 var input = $("input:reset").css({background:"yellow", border:"3px red solid"});
 $("div").text("For this type jQuery found " + input.length + ".")
 .css("color", "red");
 $("form").submit(function () { return false; }); // so it won't submit

CSS

 textarea { height:45px; }

HTML

<form>
 <input type="button" value="Input Button"/>
 <input type="checkbox" />

 <input type="file" />
 <input type="hidden" />
 <input type="image" />

 <input type="password" />
 <input type="radio" />
 <input type="reset" />

 <input type="submit" />
 <input type="text" />
 <select><option>Option<option/></select>

 <textarea></textarea>
 <button>Button</button>
 </form>
 <div>
 </div>

image $(":image")

Added in version 1.0

Added in version 1.0

Selects all elements of type image.

$(":image")

:image is equivalent to [type="image"]

Example 1: Finds all image inputs.

Javascript

 var input = $("input:image").css({background:"yellow", border:"3px red solid"});
 $("div").text("For this type jQuery found " + input.length + ".")
 .css("color", "red");
 $("form").submit(function () { return false; }); // so it won't submit

CSS

 textarea { height:45px; }

HTML

<form>
 <input type="button" value="Input Button"/>
 <input type="checkbox" />

 <input type="file" />
 <input type="hidden" />
 <input type="image" />

 <input type="password" />
 <input type="radio" />
 <input type="reset" />

 <input type="submit" />
 <input type="text" />
 <select><option>Option<option/></select>

 <textarea></textarea>
 <button>Button</button>
 </form>
 <div>
 </div>

submit $(":submit")

Selects all elements of type submit.

$(":submit")

The :submit selector typically applies to button or input elements. Note that some browsers treat <button> element as type="default" implicitly
while others (such as Internet Explorer) do not.

Example 1: Finds all submit elements that are descendants of a td element.

Javascript

 var submitEl = $("td :submit")
 .parent('td')
 .css({background:"yellow", border:"3px red solid"})
 .end();

 $('#result').text('jQuery matched ' + submitEl.length + ' elements.');

 // so it won't submit
 $("form").submit(function () { return false; });

 // Extra JS to make the HTML easier to edit (None of this is relevant to the ':submit' selector
 $('#exampleTable').find('td').each(function(i, el) {
 var inputEl = $(el).children(),
 inputType = inputEl.attr('type') ? ' type="' + inputEl.attr('type') + '"' : '';
 $(el).before('<td>' + inputEl[0].nodeName + inputType + '</td>');
 })

CSS

 textarea { height:45px; }

HTML

<table>
<form>
<table id="exampleTable" border="1" cellpadding="10" align="center">

 <tr>
 <th>
 Element Type
 </th>
 <th>
 Element
 </th>

 </tr
 <tr>
 <td>
 <input type="button" value="Input Button"/>
 </td>

 </tr>
 <tr>
 <td>
 <input type="checkbox" />
 </td>

 </tr>
 <tr>
 <td>
 <input type="file" />
 </td>

 </tr>
 <tr>
 <td>
 <input type="hidden" />
 </td>

 </tr>
 <tr>
 <td>
 <input type="image" />
 </td>

 </tr>
 <tr>
 <td>
 <input type="password" />
 </td>

 </tr>
 <tr>
 <td>
 <input type="radio" />
 </td>

 </tr>
 <tr>
 <td>
 <input type="reset" />
 </td>

 </tr>
 <tr>
 <td>
 <input type="submit" />
 </td>

 </tr>
 <tr>
 <td>
 <input type="text" />
 </td>

 </tr>
 <tr>
 <td>
 <select><option>Option</option></select>
 </td>

 </tr>

Added in version 1.0

Added in version 1.0

checkbox $(":checkbox")

Selects all elements of type checkbox.

$(":checkbox")

$(':checkbox') is equivalent to $('[type=checkbox]'). As with other pseudo-class selectors (those that begin with a ":") it is recommended to
precede it with a tag name or some other selector; otherwise, the universal selector ("*") is implied. In other words, the bare $(':checkbox') is
equivalent to $('*:checkbox'), so $('input:checkbox') should be used instead.

Example 1: Finds all checkbox inputs.

Javascript

 var input = $("form input:checkbox").wrap('').parent().css({background:"yellow", border:"3px red solid"});
 $("div").text("For this type jQuery found " + input.length + ".")
 .css("color", "red");
 $("form").submit(function () { return false; }); // so it won't submit

CSS

 textarea { height:25px; }

HTML

<form>
 <input type="button" value="Input Button"/>
 <input type="checkbox" />

 <input type="checkbox" />
 <input type="file" />
 <input type="hidden" />

 <input type="image" />
 <input type="password" />
 <input type="radio" />

 <input type="reset" />
 <input type="submit" />
 <input type="text" />

 <select><option>Option<option/></select>
 <textarea></textarea>
 <button>Button</button>
 </form>

 <div>
 </div>

radio $(":radio")

Selects all elements of type radio.

$(":radio")

$(':radio') is equivalent to $('[type=radio]'). As with other pseudo-class selectors (those that begin with a ":") it is recommended to precede
it with a tag name or some other selector; otherwise, the universal selector ("*") is implied. In other words, the bare $(':radio') is equivalent
to $('*:radio'), so $('input:radio') should be used instead.

To select a set of associated radio buttons, you might use: $('input[name=gender]:radio')

Example 1: Finds all radio inputs.

Added in version 1.0

Javascript

 var input = $("form input:radio").wrap('').parent().css({background:"yellow", border:"3px red solid"});
 $("div").text("For this type jQuery found " + input.length + ".")
 .css("color", "red");
 $("form").submit(function () { return false; }); // so it won't submit

CSS

 textarea { height:25px; }

HTML

<form>
 <input type="button" value="Input Button"/>
 <input type="checkbox" />

 <input type="file" />
 <input type="hidden" />
 <input type="image" />

 <input type="password" />
 <input type="radio" name="asdf" />
 <input type="radio" name="asdf" />

 <input type="reset" />
 <input type="submit" />
 <input type="text" />

 <select><option>Option<option/></select>
 <textarea></textarea>
 <button>Button</button>
 </form>

 <div>
 </div>

password $(":password")

Selects all elements of type password.

$(":password")

$(':password') is equivalent to $('[type=password]'). As with other pseudo-class selectors (those that begin with a ":") it is recommended to
precede it with a tag name or some other selector; otherwise, the universal selector ("*") is implied. In other words, the bare $(':password') is
equivalent to $('*:password'), so $('input:password') should be used instead.

Example 1: Finds all password inputs.

Javascript

 var input = $("input:password").css({background:"yellow", border:"3px red solid"});
 $("div").text("For this type jQuery found " + input.length + ".")
 .css("color", "red");
 $("form").submit(function () { return false; }); // so it won't submit

CSS

 textarea { height:45px; }

Added in version 1.0

HTML

<form>
 <input type="button" value="Input Button"/>
 <input type="checkbox" />

 <input type="file" />
 <input type="hidden" />
 <input type="image" />

 <input type="password" />
 <input type="radio" />
 <input type="reset" />

 <input type="submit" />
 <input type="text" />
 <select><option>Option<option/></select>

 <textarea></textarea>
 <button>Button</button>
 </form>
 <div>
 </div>

text $(":text")

Selects all elements of type text.

$(":text")

$(':text') is equivalent to $('[type=text]') and thus selects all <input type="text"> elements. As with other pseudo-class selectors (those
that begin with a ":") it is recommended to precede it with a tag name or some other selector; otherwise, the universal selector ("*") is implied.
In other words, the bare $(':text') is equivalent to $('*:text'), so $('input:text') should be used instead.

Note: As of jQuery 1.5.2, :text selects input elements that have no specified type attribute (in which case type="text" is implied).

Example 1: Finds all text inputs.

Javascript

 var input = $("form input:text").css({background:"yellow", border:"3px red solid"});
 $("div").text("For this type jQuery found " + input.length + ".")
 .css("color", "red");
 $("form").submit(function () { return false; }); // so it won't submit

CSS

 textarea { height:25px; }

Added in version 1.0

HTML

<form>
 <input type="button" value="Input Button"/>
 <input type="checkbox" />

 <input type="file" />
 <input type="hidden" />
 <input type="image" />

 <input type="password" />
 <input type="radio" />
 <input type="reset" />

 <input type="submit" />
 <input type="text" />
 <select><option>Option</option></select>

 <textarea></textarea>
 <button>Button</button>
 </form>
 <div>
 </div>

input $(":input")

Selects all input, textarea, select and button elements.

$(":input")

The :input selector basically selects all form controls.

Example 1: Finds all input elements.

Javascript

 var allInputs = $(":input");
 var formChildren = $("form > *");
 $("#messages").text("Found " + allInputs.length + " inputs and the form has " +
 formChildren.length + " children.");

 // so it won't submit
 $("form").submit(function () { return false; });

CSS

 textarea { height:25px; }

HTML

<form>
 <input type="button" value="Input Button"/>
 <input type="checkbox" />

 <input type="file" />
 <input type="hidden" />
 <input type="image" />

 <input type="password" />
 <input type="radio" />
 <input type="reset" />

 <input type="submit" />
 <input type="text" />
 <select><option>Option</option></select>

 <textarea></textarea>
 <button>Button</button>
 </form>
 <div id="messages">
 </div>

Added in version 1.1.4

Added in version 1.1.4

only-child $(":only-child")

Selects all elements that are the only child of their parent.

$(":only-child")

If the parent has other child elements, nothing is matched.

Example 1: Change the text and add a border for each button that is the only child of its parent.

Javascript

 $("div button:only-child").text("Alone").css("border", "2px blue solid");

CSS

 div { width:100px; height:80px; margin:5px; float:left; background:#b9e }

HTML

<div>
 <button>Sibling!</button>
 <button>Sibling!</button>
</div>

<div>
 <button>Sibling!</button>
</div>
<div>
 None
</div>

<div>
 <button>Sibling!</button>
 <button>Sibling!</button>
 <button>Sibling!</button>

</div>
<div>
 <button>Sibling!</button>
</div>

last-child $(":last-child")

Selects all elements that are the last child of their parent.

$(":last-child")

While :last matches only a single element, :last-child can match more than one: one for each parent.

Example 1: Finds the last span in each matched div and adds some css plus a hover state.

Javascript

 $("div span:last-child")
 .css({color:"red", fontSize:"80%"})
 .hover(function () {
 $(this).addClass("solast");
 }, function () {
 $(this).removeClass("solast");
 });

CSS

 span.solast { text-decoration:line-through; }

Added in version 1.1.4

Added in version 1.1.4

HTML

<div>
 John,
 Karl,
 Brandon,

 Sam
 </div>
 <div>
 Glen,
 Tane,

 Ralph,
 David
 </div>

first-child $(":first-child")

Selects all elements that are the first child of their parent.

$(":first-child")

While :first matches only a single element, the :first-child selector can match more than one: one for each parent. This is equivalent to
:nth-child(1).

Example 1: Finds the first span in each matched div to underline and add a hover state.

Javascript

 $("div span:first-child")
 .css("text-decoration", "underline")
 .hover(function () {
 $(this).addClass("sogreen");
 }, function () {
 $(this).removeClass("sogreen");
 });

CSS

 span { color:#008; }
 span.sogreen { color:green; font-weight: bolder; }

HTML

<div>
 John,
 Karl,
 Brandon

 </div>
 <div>
 Glen,
 Tane,
 Ralph

 </div>

nth-child $(":nth-child(index/even/odd/equation)")

Selects all elements that are the nth-child of their parent.

$(":nth-child(index/even/odd/equation)")

index:Number/String The index of each child to match, starting with 1, the string even or odd, or an equation (eg.
:nth-child(even), :nth-child(4n))

Because jQuery's implementation of :nth-child(n) is strictly derived from the CSS specification, the value of n is "1-indexed", meaning that
the counting starts at 1. For all other selector expressions, however, jQuery follows JavaScript's "0-indexed" counting. Therefore, given a single
 containing two s, $('li:nth-child(1)') selects the first while $('li:eq(1)') selects the second.

The :nth-child(n) pseudo-class is easily confused with :eq(n), even though the two can result in dramatically different matched elements.
With :nth-child(n), all children are counted, regardless of what they are, and the specified element is selected only if it matches the selector
attached to the pseudo-class. With :eq(n) only the selector attached to the pseudo-class is counted, not limited to children of any other element,
and the (n+1)th one (n is 0-based) is selected.

Further discussion of this unusual usage can be found in the W3C CSS specification.

Example 1: Finds the second li in each matched ul and notes it.

Javascript

$("ul li:nth-child(2)").append(" - 2nd!");

CSS

 div { float:left; }
 span { color:blue; }

HTML

<div>
 John
 Karl
 Brandon

 </div>
 <div>
 Sam
 </div>

 <div>
 Glen
 Tane
 Ralph

 David
 </div>

Example 2: This is a playground to see how the selector works with different strings. Notice that this is different from the :even and :odd which
have no regard for parent and just filter the list of elements to every other one. The :nth-child, however, counts the index of the child to its
particular parent. In any case, it's easier to see than explain so...

Javascript

 $("button").click(function () {
 var str = $(this).text();
 $("tr").css("background", "white");
 $("tr" + str).css("background", "#ff0000");
 $("#inner").text(str);
 });

CSS

 button { display:block; font-size:12px; width:100px; }
 div { float:left; margin:10px; font-size:10px;
 border:1px solid black; }
 span { color:blue; font-size:18px; }
 #inner { color:red; }
 td { width:50px; text-align:center; }

Added in version 1.0

HTML

<div>
 <button>:nth-child(even)</button>
 <button>:nth-child(odd)</button>
 <button>:nth-child(3n)</button>

 <button>:nth-child(2)</button>
 </div>
 <div>
 <button>:nth-child(3n+1)</button>
 <button>:nth-child(3n+2)</button>

 <button>:even</button>
 <button>:odd</button>
 </div>
 <div><table>

 <tr><td>John</td></tr>
 <tr><td>Karl</td></tr>
 <tr><td>Brandon</td></tr>

 <tr><td>Benjamin</td></tr>
 </table></div>
 <div><table>
 <tr><td>Sam</td></tr>

 </table></div>
 <div><table>
 <tr><td>Glen</td></tr>
 <tr><td>Tane</td></tr>

 <tr><td>Ralph</td></tr>
 <tr><td>David</td></tr>
 <tr><td>Mike</td></tr>

 <tr><td>Dan</td></tr>
 </table></div>

 tr

attributeContainsPrefix $("[attribute|="value"]")

Selects elements that have the specified attribute with a value either equal to a given string or starting with that string followed by a hyphen (-).

$("[attribute|="value"]")

attribute:String An attribute name.
value:String An attribute value. Quotes are mandatory.

This selector was introduced into the CSS specification to handle language attributes.

Example 1: Finds all links with an hreflang attribute that is english.

Javascript

$('a[hreflang|="en"]').css('border','3px dotted green');

HTML

 Some text

 Some other text

 will not be outlined

CSS

a { display: inline-block; }

Added in version 1.0

Added in version 1.0

Added in version 1.0

attributeContainsWord $("[attribute~="value"]")

Selects elements that have the specified attribute with a value containing a given word, delimited by spaces.

$("[attribute~="value"]")

attribute:String An attribute name.
value:String An attribute value. Quotes are mandatory.

This selector matches the test string against each word in the attribute value, where a "word" is defined as a string delimited by whitespace. The
selector matches if the test string is exactly equal to any of the words.

Example 1: Finds all inputs with a name attribute that contains the word 'man' and sets the value with some text.

Javascript

$('input[name~="man"]').val('mr. man is in it!');

HTML

<input name="man-news" />

 <input name="milk man" />
 <input name="letterman2" />
 <input name="newmilk" />

attributeMultiple $("[attributeFilter1][attributeFilter2][attributeFilterN]")

Matches elements that match all of the specified attribute filters.

$("[attributeFilter1][attributeFilter2][attributeFilterN]")

attributeFilter1:Selector An attribute filter.
attributeFilter2:Selector Another attribute filter, reducing the selection even more
attributeFilterN:Selector (optional) As many more attribute filters as necessary

Example 1: Finds all inputs that have an id attribute and whose name attribute ends with man and sets the value.

Javascript

$('input[id][name$="man"]').val('only this one');

HTML

<input id="man-news" name="man-news" />

 <input name="milkman" />
 <input id="letterman" name="new-letterman" />
 <input name="newmilk" />

attributeContains $("[attribute*="value"]")

Selects elements that have the specified attribute with a value containing the a given substring.

$("[attribute*="value"]")

attribute:String An attribute name.
value:String An attribute value. Quotes are mandatory.

This is the most generous of the jQuery attribute selectors that match against a value. It will select an element if the selector's string appears
anywhere within the element's attribute value. Compare this selector with the Attribute Contains Word selector (e.g. [attr~="word"]), which is
more appropriate in many cases.

Example 1: Finds all inputs with a name attribute that contains 'man' and sets the value with some text.

Javascript

$('input[name*="man"]').val('has man in it!');

Added in version 1.0

Added in version 1.0

Added in version 1.0

HTML

<input name="man-news" />

 <input name="milkman" />
 <input name="letterman2" />
 <input name="newmilk" />

attributeEndsWith $("[attribute$="value"]")

Selects elements that have the specified attribute with a value ending exactly with a given string. The comparison is case sensitive.

$("[attribute$="value"]")

attribute:String An attribute name.
value:String An attribute value. Quotes are mandatory.

Example 1: Finds all inputs with an attribute name that ends with 'letter' and puts text in them.

Javascript

$('input[name$="letter"]').val('a letter');

HTML

<input name="newsletter" />

 <input name="milkman" />
 <input name="jobletter" />

attributeStartsWith $("[attribute^="value"]")

Selects elements that have the specified attribute with a value beginning exactly with a given string.

$("[attribute^="value"]")

attribute:String An attribute name.
value:String An attribute value. Quotes are mandatory.

This selector can be useful for identifying elements in pages produced by server-side frameworks that produce HTML with systematic element
IDs. However it will be slower than using a class selector so leverage classes, if you can, to group like elements.

Example 1: Finds all inputs with an attribute name that starts with 'news' and puts text in them.

Javascript

$('input[name^="news"]').val('news here!');

HTML

<input name="newsletter" />

 <input name="milkman" />
 <input name="newsboy" />

attributeNotEqual $("[attribute!="value"]")

Select elements that either don't have the specified attribute, or do have the specified attribute but not with a certain value.

$("[attribute!="value"]")

attribute:String An attribute name.
value:String An attribute value. Quotes are mandatory.

This selector is equivalent to :not([attr="value"]).

Example 1: Finds all inputs that don't have the name 'newsletter' and appends text to the span next to it.

Added in version 1.0

Added in version 1.0

Javascript

$('input[name!="newsletter"]').next().append('; not newsletter');

HTML

<div>

 <input type="radio" name="newsletter" value="Hot Fuzz" />
 name is newsletter

 </div>
 <div>
 <input type="radio" value="Cold Fusion" />
 no name

 </div>
 <div>
 <input type="radio" name="accept" value="Evil Plans" />

 name is accept
 </div>

attributeEquals $("[attribute="value"]")

Selects elements that have the specified attribute with a value exactly equal to a certain value.

$("[attribute="value"]")

attribute:String An attribute name.
value:String An attribute value. Quotes are mandatory.

Example 1: Finds all inputs with a value of "Hot Fuzz" and changes the text of the next sibling span.

Javascript

$('input[value="Hot Fuzz"]').next().text(" Hot Fuzz");

HTML

<div>
 <label>
 <input type="radio" name="newsletter" value="Hot Fuzz" />
 name?
 </label>
 </div>
 <div>
 <label>
 <input type="radio" name="newsletter" value="Cold Fusion" />
 value?
 </label>
 </div>
 <div>
 <label>
 <input type="radio" name="newsletter" value="Evil Plans" />
 value?
 </label>
 </div>

attributeHas $("[attribute]")

Selects elements that have the specified attribute, with any value.

$("[attribute]")

attribute:String An attribute name.

Example 1: Bind a single click that adds the div id to its text.

Added in version 1.0

Added in version 1.0

Javascript

 $('div[id]').one('click', function(){
 var idString = $(this).text() + ' = ' + $(this).attr('id');
 $(this).text(idString);
 });

HTML

<div>no id</div>
 <div id="hey">with id</div>

 <div id="there">has an id</div>
 <div>nope</div>

visible $(":visible")

Selects all elements that are visible.

$(":visible")

Elements can be considered hidden for several reasons:

They have a CSS display value of none.
They are form elements with type="hidden".
Their width and height are explicitly set to 0.
An ancestor element is hidden, so the element is not shown on the page.

Elements with visibility: hidden or opacity: 0 are considered to be visible, since they still consume space in the layout. During animations
that hide an element, the element is considered to be visible until the end of the animation. During animations to show an element, the element
is considered to be visible at the start at the animation.

How :visible is calculated was changed in jQuery 1.3.2. The release notes outline the changes in more detail.

Example 1: Make all visible divs turn yellow on click.

Javascript

 $("div:visible").click(function () {
 $(this).css("background", "yellow");
 });
 $("button").click(function () {
 $("div:hidden").show("fast");
 });

CSS

 div { width:50px; height:40px; margin:5px; border:3px outset green; float:left; }
 .starthidden { display:none; }

HTML

<button>Show hidden to see they don't change</button>
 <div></div>
 <div class="starthidden"></div>
 <div></div>

 <div></div>
 <div style="display:none;"></div>

hidden $(":hidden")

Selects all elements that are hidden.

$(":hidden")

Elements can be considered hidden for several reasons:

Added in version 1.0

They have a CSS display value of none.
They are form elements with type="hidden".
Their width and height are explicitly set to 0.
An ancestor element is hidden, so the element is not shown on the page.

Elements with visibility: hidden or opacity: 0 are considered to be visible, since they still consume space in the layout. During animations
that hide an element, the element is considered to be visible until the end of the animation. During animations to show an element, the element
is considered to be visible at the start of the animation.

How :hidden is determined was changed in jQuery 1.3.2. An element is assumed to be hidden if it or any of its parents consumes no space in
the document. CSS visibility isn't taken into account (therefore $(elem).css('visibility','hidden').is(':hidden') == false). The release
notes outline the changes in more detail.

Example 1: Shows all hidden divs and counts hidden inputs.

Javascript

// in some browsers :hidden includes head, title, script, etc...
var hiddenEls = $("body").find(":hidden").not("script");

$("span:first").text("Found " + hiddenEls.length + " hidden elements total.");
$("div:hidden").show(3000);
$("span:last").text("Found " + $("input:hidden").length + " hidden inputs.");

CSS

 div { width:70px; height:40px; background:#ee77ff; margin:5px; float:left; }
 span { display:block; clear:left; color:red; }
 .starthidden { display:none; }

HTML

 <div></div>
 <div style="display:none;">Hider!</div>
 <div></div>

 <div class="starthidden">Hider!</div>
 <div></div>
 <form>
 <input type="hidden" />

 <input type="hidden" />
 <input type="hidden" />
 </form>

parent $(":parent")

Select all elements that are the parent of another element, including text nodes.

$(":parent")

This is the inverse of :empty.

One important thing to note regarding the use of :parent (and :empty) is that child elements include text nodes.

The W3C recommends that the <p> element have at least one child node, even if that child is merely text (see http://www.w3.org/TR/html401
/struct/text.html#edef-P). Some other elements, on the other hand, are empty (i.e. have no children) by definition: <input>, ,
, and
<hr>, for example.

Example 1: Finds all tds with children, including text.

Javascript

$("td:parent").fadeTo(1500, 0.3);

Added in version 1.1.4

Added in version 1.0

CSS

 td { width:40px; background:green; }

HTML

<table border="1">

 <tr><td>Value 1</td><td></td></tr>
 <tr><td>Value 2</td><td></td></tr>

</table>

has $(":has(selector)")

Selects elements which contain at least one element that matches the specified selector.

$(":has(selector)")

selector:Selector Any selector.

The expression $('div:has(p)') matches a <div> if a <p> exists anywhere among its descendants, not just as a direct child.

Example 1: Adds the class "test" to all divs that have a paragraph inside of them.

Javascript

$("div:has(p)").addClass("test");

HTML

<div><p>Hello in a paragraph</p></div>

 <div>Hello again! (with no paragraph)</div>

CSS

 .test{ border: 3px inset red; }

empty $(":empty")

Select all elements that have no children (including text nodes).

$(":empty")

This is the inverse of :parent.

One important thing to note with :empty (and :parent) is that child elements include text nodes.

The W3C recommends that the <p> element have at least one child node, even if that child is merely text (see http://www.w3.org/TR/html401
/struct/text.html#edef-P). Some other elements, on the other hand, are empty (i.e. have no children) by definition: <input>, ,
, and
<hr>, for example.

Example 1: Finds all elements that are empty - they don't have child elements or text.

Javascript

$("td:empty").text("Was empty!").css('background', 'rgb(255,220,200)');

CSS

 td { text-align:center; }

Added in version 1.1.4

Added in version 1.2

HTML

<table border="1">
 <tr><td>TD #0</td><td></td></tr>
 <tr><td>TD #2</td><td></td></tr>

 <tr><td></td><td>TD#5</td></tr>
 </table>

contains $(":contains(text)")

Select all elements that contain the specified text.

$(":contains(text)")

text:String A string of text to look for. It's case sensitive.

The matching text can appear directly within the selected element, in any of that element's descendants, or a combination thereof. As with
attribute value selectors, text inside the parentheses of :contains() can be written as bare words or surrounded by quotation marks. The text
must have matching case to be selected.

Example 1: Finds all divs containing "John" and underlines them.

Javascript

$("div:contains('John')").css("text-decoration", "underline");

HTML

<div>John Resig</div>

<div>George Martin</div>
<div>Malcom John Sinclair</div>
<div>J. Ohn</div>

animated $(":animated")

Select all elements that are in the progress of an animation at the time the selector is run.

$(":animated")

Example 1: Change the color of any div that is animated.

Javascript

 $("#run").click(function(){
 $("div:animated").toggleClass("colored");
 });
 function animateIt() {
 $("#mover").slideToggle("slow", animateIt);
 }
 animateIt();

HTML

<button id="run">Run</button>

 <div></div>
 <div id="mover"></div>
 <div></div>

CSS

 div { background:yellow; border:1px solid #AAA; width:80px; height:80px; margin:0 5px; float:left; }
 div.colored { background:green; }

Added in version 1.2

Added in version 1.0

Added in version 1.0

header $(":header")

Selects all elements that are headers, like h1, h2, h3 and so on.

$(":header")

Example 1: Adds a background and text color to all the headers on the page.

Javascript

$(":header").css({ background:'#CCC', color:'blue' });

HTML

<h1>Header 1</h1>

 <p>Contents 1</p>
 <h2>Header 2</h2>
 <p>Contents 2</p>

CSS

 body { font-size: 10px; font-family: Arial; }
 h1, h2 { margin: 3px 0; }

lt $(":lt(index)")

Select all elements at an index less than index within the matched set.

$(":lt(index)")

index:Number Zero-based index.

index-related selectors

The index-related selectors (including this "less than" selector) filter the set of elements that have matched the expressions that precede them.
They narrow the set down based on the order of the elements within this matched set. For example, if elements are first selected with a class
selector (.myclass) and four elements are returned, these elements are given indices 0 through 3 for the purposes of these selectors.

Note that since JavaScript arrays use 0-based indexing, these selectors reflect that fact. This is why $('.myclass:lt(1)') selects the first
element in the document with the class myclass, rather than selecting no elements. In contrast, :nth-child(n) uses 1-based indexing to conform
to the CSS specification.

Example 1: Finds TDs less than the one with the 4th index (TD#4).

Javascript

$("td:lt(4)").css("color", "red");

HTML

<table border="1">

 <tr><td>TD #0</td><td>TD #1</td><td>TD #2</td></tr>
 <tr><td>TD #3</td><td>TD #4</td><td>TD #5</td></tr>

 <tr><td>TD #6</td><td>TD #7</td><td>TD #8</td></tr>
</table>

gt $(":gt(index)")

Select all elements at an index greater than index within the matched set.

$(":gt(index)")

index:Number Zero-based index.

index-related selectors

Added in version 1.0

The index-related selector expressions (including this "greater than" selector) filter the set of elements that have matched the expressions that
precede them. They narrow the set down based on the order of the elements within this matched set. For example, if elements are first selected
with a class selector (.myclass) and four elements are returned, these elements are given indices 0 through 3 for the purposes of these selectors.

Note that since JavaScript arrays use 0-based indexing, these selectors reflect that fact. This is why $('.myclass:gt(1)') selects elements after
the second element in the document with the class myclass, rather than after the first. In contrast, :nth-child(n) uses 1-based indexing to
conform to the CSS specification.

Example 1: Finds TD #5 and higher. Reminder: the indexing starts at 0.

Javascript

$("td:gt(4)").css("text-decoration", "line-through");

HTML

<table border="1">

 <tr><td>TD #0</td><td>TD #1</td><td>TD #2</td></tr>
 <tr><td>TD #3</td><td>TD #4</td><td>TD #5</td></tr>

 <tr><td>TD #6</td><td>TD #7</td><td>TD #8</td></tr>
 </table>

eq $(":eq(index)")

Select the element at index n within the matched set.

$(":eq(index)")

index:Number Zero-based index of the element to match.

The index-related selectors (:eq(), :lt(), :gt(), :even, :odd) filter the set of elements that have matched the expressions that precede them.
They narrow the set down based on the order of the elements within this matched set. For example, if elements are first selected with a class
selector (.myclass) and four elements are returned, these elements are given indices 0 through 3 for the purposes of these selectors.

Note that since JavaScript arrays use 0-based indexing, these selectors reflect that fact. This is why $('.myclass:eq(1)') selects the second
element in the document with the class myclass, rather than the first. In contrast, :nth-child(n) uses 1-based indexing to conform to the CSS
specification.

Unlike the .eq(index) method, the :eq(index) selector does not accept a negative value for index. For example, while $('li').eq(-1) selects
the last li element, $('li:eq(-1)') selects nothing.

Example 1: Finds the third td.

Javascript

$("td:eq(2)").css("color", "red");

HTML

<table border="1">
 <tr><td>TD #0</td><td>TD #1</td><td>TD #2</td></tr>
 <tr><td>TD #3</td><td>TD #4</td><td>TD #5</td></tr>
 <tr><td>TD #6</td><td>TD #7</td><td>TD #8</td></tr>
</table>

Example 2: Apply three different styles to list items to demonstrate that :eq() is designed to select a single element while :nth-child() or :eq()
within a looping construct such as .each() can select multiple elements.

Added in version 1.0

Added in version 1.0

Javascript

// applies yellow background color to a single
$("ul.nav li:eq(1)").css("backgroundColor", "#ff0");

// applies italics to text of the second within each <ul class="nav">
$("ul.nav").each(function(index) {
 $(this).find("li:eq(1)").css("fontStyle", "italic");
});

// applies red text color to descendants of <ul class="nav">
// for each that is the second child of its parent
$("ul.nav li:nth-child(2)").css("color", "red");

HTML

<ul class="nav">
 List 1, item 1
 List 1, item 2
 List 1, item 3

<ul class="nav">
 List 2, item 1
 List 2, item 2
 List 2, item 3

odd $(":odd")

Selects odd elements, zero-indexed. See also even.

$(":odd")

In particular, note that the 0-based indexing means that, counter-intuitively, :odd selects the second element, fourth element, and so on within
the matched set.

Example 1: Finds odd table rows, matching the second, fourth and so on (index 1, 3, 5 etc.).

Javascript

$("tr:odd").css("background-color", "#bbbbff");

CSS

 table {
 background:#f3f7f5;
 }

HTML

<table border="1">
 <tr><td>Row with Index #0</td></tr>
 <tr><td>Row with Index #1</td></tr>

 <tr><td>Row with Index #2</td></tr>
 <tr><td>Row with Index #3</td></tr>
 </table>

even $(":even")

Selects even elements, zero-indexed. See also odd.

$(":even")

In particular, note that the 0-based indexing means that, counter-intuitively, :even selects the first element, third element, and so on within the
matched set.

Example 1: Finds even table rows, matching the first, third and so on (index 0, 2, 4 etc.).

Added in version 1.0

Added in version 1.0

Javascript

$("tr:even").css("background-color", "#bbbbff");

CSS

 table {
 background:#eeeeee;
 }

HTML

<table border="1">
 <tr><td>Row with Index #0</td></tr>
 <tr><td>Row with Index #1</td></tr>

 <tr><td>Row with Index #2</td></tr>
 <tr><td>Row with Index #3</td></tr>
 </table>

not $(":not(selector)")

Selects all elements that do not match the given selector.

$(":not(selector)")

selector:Selector A selector with which to filter by.

All selectors are accepted inside :not(), for example: :not(div a) and :not(div,a).

Additional Notes

The .not() method will end up providing you with more readable selections than pushing complex selectors or variables into a :not() selector
filter. In most cases, it is a better choice.

Example 1: Finds all inputs that are not checked and highlights the next sibling span. Notice there is no change when clicking the checkboxes
since no click events have been linked.

Javascript

 $("input:not(:checked) + span").css("background-color", "yellow");
 $("input").attr("disabled", "disabled");

HTML

<div>
 <input type="checkbox" name="a" />
 Mary
</div>

<div>
 <input type="checkbox" name="b" />
 lcm

</div>
<div>
 <input type="checkbox" name="c" checked="checked" />

 Peter
</div>

last $(":last")

Selects the last matched element.

$(":last")

Note that :last selects a single element by filtering the current jQuery collection and matching the last element within it.

Added in version 1.0

Added in version 1.0

Example 1: Finds the last table row.

Javascript

$("tr:last").css({backgroundColor: 'yellow', fontWeight: 'bolder'});

HTML

<table>

 <tr><td>First Row</td></tr>
 <tr><td>Middle Row</td></tr>
 <tr><td>Last Row</td></tr>

 </table>

first $(":first")

Selects the first matched element.

$(":first")

The :first pseudo-class is equivalent to :eq(0). It could also be written as :lt(1). While this matches only a single element, :first-child can
match more than one: One for each parent.

Example 1: Finds the first table row.

Javascript

$("tr:first").css("font-style", "italic");

CSS

 td { color:blue; font-weight:bold; }

HTML

<table>
 <tr><td>Row 1</td></tr>
 <tr><td>Row 2</td></tr>

 <tr><td>Row 3</td></tr>
 </table>

next siblings $("prev ~ siblings")

Selects all sibling elements that follow after the "prev" element, have the same parent, and match the filtering "siblings" selector.

$("prev ~ siblings")

prev:Selector Any valid selector.
siblings:Selector A selector to filter elements that are the following siblings of the first selector.

The notable difference between (prev + next) and (prev ~ siblings) is their respective reach. While the former reaches only to the
immediately following sibling element, the latter extends that reach to all following sibling elements.

Example 1: Finds all divs that are siblings after the element with #prev as its id. Notice the span isn't selected since it is not a div and the "niece"
isn't selected since it is a child of a sibling, not an actual sibling.

Javascript

$("#prev ~ div").css("border", "3px groove blue");

Added in version 1.0

Added in version 1.0

CSS

 div,span {
 display:block;
 width:80px;
 height:80px;
 margin:5px;
 background:#bbffaa;
 float:left;
 font-size:14px;
 }
 div#small {
 width:60px;
 height:25px;
 font-size:12px;
 background:#fab;
 }

HTML

<div>div (doesn't match since before #prev)</div>
 span#prev
 <div>div sibling</div>

 <div>div sibling <div id="small">div niece</div></div>
 span sibling (not div)
 <div>div sibling</div>

next adjacent $("prev + next")

Selects all next elements matching "next" that are immediately preceded by a sibling "prev".

$("prev + next")

prev:Selector Any valid selector.
next:Selector A selector to match the element that is next to the first selector.

One important point to consider with both the next adjacent sibling selector (prev + next) and the general sibling selector (prev ~ siblings) is
that the elements on either side of the combinator must share the same parent.

Example 1: Finds all inputs that are next to a label.

Javascript

$("label + input").css("color", "blue").val("Labeled!")

HTML

<form>

 <label>Name:</label>
 <input name="name" />
 <fieldset>
 <label>Newsletter:</label>

 <input name="newsletter" />
 </fieldset>
 </form>
 <input name="none" />

child $("parent > child")

Selects all direct child elements specified by "child" of elements specified by "parent".

$("parent > child")

parent:Selector Any valid selector.
child:Selector A selector to filter the child elements.

As a CSS selector, the child combinator is supported by all modern web browsers including Safari, Firefox, Opera, Chrome, and Internet

Added in version 1.0

Explorer 7 and above, but notably not by Internet Explorer versions 6 and below. However, in jQuery, this selector (along with all others) works
across all supported browsers, including IE6.

The child combinator (E > F) can be thought of as a more specific form of the descendant combinator (E F) in that it selects only first-level
descendants.

Note: The $("> elem", context) selector will be deprecated in a future release. Its usage is thus discouraged in lieu of using
alternative selectors.

Example 1: Places a border around all list items that are children of <ul class="topnav"> .

Javascript

$("ul.topnav > li").css("border", "3px double red");

CSS

body { font-size:14px; }

HTML

<ul class="topnav">
 Item 1
 Item 2
 Nested item 1Nested item 2Nested item 3

 Item 3

descendant $("ancestor descendant")

Selects all elements that are descendants of a given ancestor.

$("ancestor descendant")

ancestor:Selector Any valid selector.
descendant:Selector A selector to filter the descendant elements.

A descendant of an element could be a child, grandchild, great-grandchild, and so on, of that element.

Example 1: Finds all input descendants of forms.

Javascript

$("form input").css("border", "2px dotted blue");

CSS

 body { font-size:14px; }
 form { border:2px green solid; padding:2px; margin:0;
 background:#efe; }
 div { color:red; }
 fieldset { margin:1px; padding:3px; }

HTML

<form>
 <div>Form is surrounded by the green outline</div>
 <label>Child:</label>
 <input name="name" />

 <fieldset>
 <label>Grandchild:</label>
 <input name="newsletter" />
 </fieldset>

 </form>
 Sibling to form: <input name="none" />

Added in version 1.0

multiple $("selector1, selector2, selectorN")

Selects the combined results of all the specified selectors.

$("selector1, selector2, selectorN")

selector1:Selector Any valid selector.
selector2:Selector Another valid selector.
selectorN:Selector (optional) As many more valid selectors as you like.

You can specify any number of selectors to combine into a single result. This multiple expression combinator is an efficient way to select
disparate elements. The order of the DOM elements in the returned jQuery object may not be identical, as they will be in document order. An
alternative to this combinator is the .add() method.

Example 1: Finds the elements that match any of these three selectors.

Javascript

$("div,span,p.myClass").css("border","3px solid red");

HTML

<div>div</div>

 <p class="myClass">p class="myClass"</p>
 <p class="notMyClass">p class="notMyClass"</p>
 span

CSS

 div,span,p {
 width: 126px;
 height: 60px;
 float:left;
 padding: 3px;
 margin: 2px;
 background-color: #EEEEEE;
 font-size:14px;
 }

Example 2: Show the order in the jQuery object.

Javascript

 var list = $("div,p,span").map(function () {
 return this.tagName;
 }).get().join(", ");
 $("b").append(document.createTextNode(list));

CSS

 b { color:red; font-size:16px; display:block; clear:left; }
 div,span,p { width: 40px; height: 40px; float:left;
 margin: 10px; background-color: blue;
 padding:3px; color:white;
 }

HTML

span

 <p>p</p>
 <p>p</p>
 <div>div</div>
 span

 <p>p</p>
 <div>div</div>

Added in version 1.0

Added in version 1.0

all $("*")

Selects all elements.

$("*")

Caution: The all, or universal, selector is extremely slow, except when used by itself.

Example 1: Finds every element (including head, body, etc) in the document.

Javascript

var elementCount = $("*").css("border","3px solid red").length;
$("body").prepend("<h3>" + elementCount + " elements found</h3>");

HTML

<div>DIV</div>

 SPAN
 <p>P <button>Button</button></p>

CSS

 h3 { margin: 0; }
 div,span,p {
 width: 80px;
 height: 40px;
 float:left;
 padding: 10px;
 margin: 10px;
 background-color: #EEEEEE;
 }

Example 2: A common way to select all elements is to find within document.body so elements like head, script, etc are left out.

Javascript

var elementCount = $("#test").find("*").css("border","3px solid red").length;
$("body").prepend("<h3>" + elementCount + " elements found</h3>");

HTML

<div id="test">
 <div>DIV</div>
 SPAN
 <p>P <button>Button</button></p>
</div>

CSS

 h3 { margin: 0; }
 div,span,p {
 width: 80px;
 height: 40px;
 float:left;
 padding: 10px;
 margin: 10px;
 background-color: #EEEEEE;
 }
 #test {
 width: auto; height: auto; background-color: transparent;
 }

class $(".class")

Selects all elements with the given class.

$(".class")

Added in version 1.0

class:String A class to search for. An element can have multiple classes; only one of them must match.

For class selectors, jQuery uses JavaScript's native getElementsByClassName() function if the browser supports it.

Example 1: Finds the element with the class "myClass".

Javascript

$(".myClass").css("border","3px solid red");

HTML

<div class="notMe">div class="notMe"</div>

 <div class="myClass">div class="myClass"</div>
 span class="myClass"

CSS

 div,span {
 width: 100px;
 height: 40px;
 float:left;
 padding: 10px;
 margin: 10px;
 background-color: #EEEEEE;
 }

Example 2: Finds the element with both "myclass" and "otherclass" classes.

Javascript

$(".myclass.otherclass").css("border","13px solid red");

HTML

<div class="myclass">div class="notMe"</div>

 <div class="myclass otherclass">div class="myClass"</div>
 span class="myClass"

CSS

 div,span {
 width: 100px;
 height: 40px;
 float:left;
 padding: 10px;
 margin: 10px;
 background-color: #EEEEEE;
 }

element $("element")

Selects all elements with the given tag name.

$("element")

element:String An element to search for. Refers to the tagName of DOM nodes.

JavaScript's getElementsByTagName() function is called to return the appropriate elements when this expression is used.

Example 1: Finds every DIV element.

Javascript

$("div").css("border","9px solid red");

Added in version 1.0

HTML

<div>DIV1</div>

 <div>DIV2</div>
 SPAN

CSS

 div,span {
 width: 60px;
 height: 60px;
 float:left;
 padding: 10px;
 margin: 10px;
 background-color: #EEEEEE;
 }

id $("#id")

Selects a single element with the given id attribute.

$("#id")

id:String An ID to search for, specified via the id attribute of an element.

For id selectors, jQuery uses the JavaScript function document.getElementById(), which is extremely efficient. When another selector is
attached to the id selector, such as h2#pageTitle, jQuery performs an additional check before identifying the element as a match.

As always, remember that as a developer, your time is typically the most valuable resource. Do not focus on optimization of
selector speed unless it is clear that performance needs to be improved.

Each id value must be used only once within a document. If more than one element has been assigned the same ID, queries that use that ID will
only select the first matched element in the DOM. This behavior should not be relied on, however; a document with more than one element
using the same ID is invalid.

If the id contains characters like periods or colons you have to escape those characters with backslashes.

Example 1: Finds the element with the id "myDiv".

Javascript

$("#myDiv").css("border","3px solid red");

HTML

<div id="notMe"><p>id="notMe"</p></div>

 <div id="myDiv">id="myDiv"</div>

CSS

 div {
 width: 90px;
 height: 90px;
 float:left;
 padding: 5px;
 margin: 5px;
 background-color: #EEEEEE;
 }

Example 2: Finds the element with the id "myID.entry[1]". See how certain characters must be escaped with backslashes.

Javascript

$("#myID\\.entry\\[1\\]").css("border","3px solid red");

HTML

<div id="myID.entry[0]">id="myID.entry[0]"</div>

 <div id="myID.entry[1]">id="myID.entry[1]"</div>
 <div id="myID.entry[2]">id="myID.entry[2]"</div>

CSS

 div {
 width: 300px;
 float:left;
 padding: 2px;
 margin: 3px;
 background-color: #EEEEEE;
 }

Added in version 1.4

Added in version 1.6

Traversing

has

Reduce the set of matched elements to those that have a descendant that matches the selector or DOM element.

has(contained):jQuery

contained:Element A DOM element to match elements against.

Given a jQuery object that represents a set of DOM elements, the .has() method constructs a new jQuery object from a subset of the matching
elements. The supplied selector is tested against the descendants of the matching elements; the element will be included in the result if any of
its descendant elements matches the selector.

Consider a page with a nested list as follows:

 list item 1
 list item 2

 list item 2-a
 list item 2-b

 list item 3
 list item 4

We can apply this method to the set of list items as follows:

$('li').has('ul').css('background-color', 'red');

The result of this call is a red background for item 2, as it is the only that has a among its descendants.

Example 1: Check if an element is inside another.

Javascript

 $("ul").append("" + ($("ul").has("li").length ? "Yes" : "No") + "");
 $("ul").has("li").addClass("full");

CSS

 .full { border: 1px solid red; }

HTML

Does the UL contain an LI?

parentsUntil

Get the ancestors of each element in the current set of matched elements, up to but not including the element matched by the selector, DOM
node, or jQuery object.

parentsUntil(element, filter):jQuery

element:Element (optional) A DOM node or jQuery object indicating where to stop matching ancestor elements.
filter:Selector (optional) A string containing a selector expression to match elements against.

Given a selector expression that represents a set of DOM elements, the .parentsUntil() method traverses through the ancestors of these
elements until it reaches an element matched by the selector passed in the method's argument. The resulting jQuery object contains all of the
ancestors up to but not including the one matched by the .parentsUntil() selector.

If the selector is not matched or is not supplied, all ancestors will be selected; in these cases it selects the same elements as the .parents()
method does when no selector is provided.

As of jQuery 1.6, A DOM node or jQuery object, instead of a selector, may be used for the first .parentsUntil() argument.

The method optionally accepts a selector expression for its second argument. If this argument is supplied, the elements will be filtered by
testing whether they match it.

Added in version 1.6

Example 1: Find the ancestors of <li class="item-a"> up to <ul class="level-1"> and give them a red background color. Also, find ancestors of <li
class="item-2"> that have a class of "yes" up to <ul class="level-1"> and give them a green border.

Javascript

$("li.item-a").parentsUntil(".level-1")
 .css("background-color", "red");

$("li.item-2").parentsUntil($("ul.level-1"), ".yes")
 .css("border", "3px solid green");

HTML

<ul class="level-1 yes">
 <li class="item-i">I
 <li class="item-ii">II
 <ul class="level-2 yes">
 <li class="item-a">A
 <li class="item-b">B
 <ul class="level-3">
 <li class="item-1">1
 <li class="item-2">2
 <li class="item-3">3

 <li class="item-c">C

 <li class="item-iii">III

prevUntil

Get all preceding siblings of each element up to but not including the element matched by the selector, DOM node, or jQuery object.

prevUntil(element, filter):jQuery

element:Element (optional) A DOM node or jQuery object indicating where to stop matching preceding sibling
elements.

filter:Selector (optional) A string containing a selector expression to match elements against.

Given a selector expression that represents a set of DOM elements, the .prevUntil() method searches through the predecessors of these
elements in the DOM tree, stopping when it reaches an element matched by the method's argument. The new jQuery object that is returned
contains all previous siblings up to but not including the one matched by the .prevUntil() selector; the elements are returned in order from the
closest sibling to the farthest.

If the selector is not matched or is not supplied, all previous siblings will be selected; in these cases it selects the same elements as the
.prevAll() method does when no filter selector is provided.

As of jQuery 1.6, A DOM node or jQuery object, instead of a selector, may be used for the first .prevUntil() argument.

The method optionally accepts a selector expression for its second argument. If this argument is supplied, the elements will be filtered by
testing whether they match it.

Example 1: Find the siblings that precede <dt id="term-2"> up to the preceding <dt> and give them a red background color. Also, find previous
<dd> siblings of <dt id="term-3"> up to <dt id="term-1"> and give them a green text color.

Javascript

$("#term-2").prevUntil("dt")
 .css("background-color", "red");

var term1 = document.getElementById('term-1');
$("#term-3").prevUntil(term1, "dd")
 .css("color", "green");

Added in version 1.6

HTML

<dl>
 <dt id="term-1">term 1</dt>
 <dd>definition 1-a</dd>
 <dd>definition 1-b</dd>
 <dd>definition 1-c</dd>
 <dd>definition 1-d</dd>

 <dt id="term-2">term 2</dt>
 <dd>definition 2-a</dd>
 <dd>definition 2-b</dd>
 <dd>definition 2-c</dd>

 <dt id="term-3">term 3</dt>
 <dd>definition 3-a</dd>
 <dd>definition 3-b</dd>
</dl>

nextUntil

Get all following siblings of each element up to but not including the element matched by the selector, DOM node, or jQuery object passed.

nextUntil(element, filter):jQuery

element:Element (optional) A DOM node or jQuery object indicating where to stop matching following sibling
elements.

filter:Selector (optional) A string containing a selector expression to match elements against.

Given a selector expression that represents a set of DOM elements, the .nextUntil() method searches through the successors of these elements
in the DOM tree, stopping when it reaches an element matched by the method's argument. The new jQuery object that is returned contains all
following siblings up to but not including the one matched by the .nextUntil() argument.

If the selector is not matched or is not supplied, all following siblings will be selected; in these cases it selects the same elements as the
.nextAll() method does when no filter selector is provided.

As of jQuery 1.6, A DOM node or jQuery object, instead of a selector, may be passed to the .nextUntil() method.

The method optionally accepts a selector expression for its second argument. If this argument is supplied, the elements will be filtered by
testing whether they match it.

Example 1: Find the siblings that follow <dt id="term-2"> up to the next <dt> and give them a red background color. Also, find <dd> siblings
that follow <dt id="term-1"> up to <dt id="term-3"> and give them a green text color.

Javascript

$("#term-2").nextUntil("dt")
 .css("background-color", "red");

var term3 = document.getElementById("term-3");
$("#term-1").nextUntil(term3, "dd")
 .css("color", "green");

HTML

<dl>
 <dt id="term-1">term 1</dt>
 <dd>definition 1-a</dd>
 <dd>definition 1-b</dd>
 <dd>definition 1-c</dd>
 <dd>definition 1-d</dd>

 <dt id="term-2">term 2</dt>
 <dd>definition 2-a</dd>
 <dd>definition 2-b</dd>
 <dd>definition 2-c</dd>

 <dt id="term-3">term 3</dt>
 <dd>definition 3-a</dd>
 <dd>definition 3-b</dd>
</dl>

Added in version 1.0

each

Iterate over a jQuery object, executing a function for each matched element.

each(function(index, Element)):jQuery

function(index, Element):Function A function to execute for each matched element.

The .each() method is designed to make DOM looping constructs concise and less error-prone. When called it iterates over the DOM elements
that are part of the jQuery object. Each time the callback runs, it is passed the current loop iteration, beginning from 0. More importantly, the
callback is fired in the context of the current DOM element, so the keyword this refers to the element.

Suppose we had a simple unordered list on the page:

 foo
 bar

We can select the list items and iterate across them:

$('li').each(function(index) {
 alert(index + ': ' + $(this).text());
 });

A message is thus alerted for each item in the list:

0: foo

1: bar

We can stop the loop from within the callback function by returning false.

Example 1: Iterates over three divs and sets their color property.

Javascript

 $(document.body).click(function () {
 $("div").each(function (i) {
 if (this.style.color != "blue") {
 this.style.color = "blue";
 } else {
 this.style.color = "";
 }
 });
 });

CSS

 div { color:red; text-align:center; cursor:pointer;
 font-weight:bolder; width:300px; }

HTML

<div>Click here</div>

 <div>to iterate through</div>
 <div>these divs.</div>

Example 2: If you want to have the jQuery object instead of the regular DOM element, use the $(this) function, for example:

Javascript

 $("span").click(function () {
 $("li").each(function(){
 $(this).toggleClass("example");
 });
 });

Added in version 1.4

CSS

 ul { font-size:18px; margin:0; }
 span { color:blue; text-decoration:underline; cursor:pointer; }
 .example { font-style:italic; }

HTML

To do list: (click here to change)

 Eat
 Sleep

 Be merry

Example 3: You can use 'return' to break out of each() loops early.

Javascript

 $("button").click(function () {
 $("div").each(function (index, domEle) {
 // domEle == this
 $(domEle).css("backgroundColor", "yellow");
 if ($(this).is("#stop")) {
 $("span").text("Stopped at div index #" + index);
 return false;
 }
 });
 });

CSS

 div { width:40px; height:40px; margin:5px; float:left;
 border:2px blue solid; text-align:center; }
 span { color:red; }

HTML

<button>Change colors</button>

 <div></div>
 <div></div>

 <div></div>
 <div></div>
 <div id="stop">Stop here</div>
 <div></div>

 <div></div>
 <div></div>

first

Reduce the set of matched elements to the first in the set.

first():jQuery

[

Given a jQuery object that represents a set of DOM elements, the .first() method constructs a new jQuery object from the first matching
element.

Consider a page with a simple list on it:

 list item 1
 list item 2
 list item 3

Added in version 1.4

Added in version 1.1.4

 list item 4
 list item 5

We can apply this method to the set of list items:

$('li').first().css('background-color', 'red');

The result of this call is a red background for the first item.

Example 1: Highlight the first span in a paragraph.

CSS

.highlight{background-color: yellow}

Javascript

$("p span").first().addClass('highlight');

HTML

<p>Look: This is some text in a paragraph. This is a note about it.</p>

last

Reduce the set of matched elements to the final one in the set.

last():jQuery

[

Given a jQuery object that represents a set of DOM elements, the .last() method constructs a new jQuery object from the last matching
element.

Consider a page with a simple list on it:

 list item 1
 list item 2
 list item 3
 list item 4
 list item 5

We can apply this method to the set of list items:

$('li').last().css('background-color', 'red');

The result of this call is a red background for the final item.

Example 1: Highlight the last span in a paragraph.

CSS

.highlight{background-color: yellow}

Javascript

$("p span").last().addClass('highlight');

HTML

<p>Look: This is some text in a paragraph. This is a note about it.</p>

slice

Reduce the set of matched elements to a subset specified by a range of indices.

slice(start, end):jQuery

start:Integer An integer indicating the 0-based position at which the elements begin to be selected. If
negative, it indicates an offset from the end of the set.

end:Integer (optional) An integer indicating the 0-based position at which the elements stop being selected.
If negative, it indicates an offset from the end of the set. If omitted, the range continues until
the end of the set.

Given a jQuery object that represents a set of DOM elements, the .slice() method constructs a new jQuery object from a subset of the
matching elements. The supplied start index identifies the position of one of the elements in the set; if end is omitted, all elements after this
one will be included in the result.

Consider a page with a simple list on it:

 list item 1
 list item 2
 list item 3
 list item 4
 list item 5

We can apply this method to the set of list items:

$('li').slice(2).css('background-color', 'red');

The result of this call is a red background for items 3, 4, and 5. Note that the supplied index is zero-based, and refers to the position of elements
within the jQuery object, not within the DOM tree.

The end parameter allows us to limit the selected range even further. For example:

$('li').slice(2, 4).css('background-color', 'red');

Now only items 3 and 4 are selected. The index is once again zero-based; the range extends up to but not including the specified index.

Negative Indices

The jQuery .slice() method is patterned after the JavaScript .slice() method for arrays. One of the features that it mimics is the ability for
negative numbers to be passed as either the start or end parameter. If a negative number is provided, this indicates a position starting from the
end of the set, rather than the beginning. For example:

$('li').slice(-2, -1).css('background-color', 'red');

This time only list item 4 is turned red, since it is the only item in the range between two from the end (-2) and one from the end (-1).

Example 1: Turns divs yellow based on a random slice.

Javascript

 function colorEm() {
 var $div = $("div");
 var start = Math.floor(Math.random() *
 $div.length);
 var end = Math.floor(Math.random() *
 ($div.length - start)) +
 start + 1;
 if (end == $div.length) end = undefined;
 $div.css("background", "");
 if (end)
 $div.slice(start, end).css("background", "yellow");
 else
 $div.slice(start).css("background", "yellow");

 $("span").text('$("div").slice(' + start +
 (end ? ', ' + end : '') +
 ').css("background", "yellow");');
 }

 $("button").click(colorEm);

Added in version 1.0

CSS

 div { width:40px; height:40px; margin:10px; float:left;
 border:2px solid blue; }
 span { color:red; font-weight:bold; }
 button { margin:5px; }

HTML

<p><button>Turn slice yellow</button>
 Click the button!</p>
 <div></div>
 <div></div>

 <div></div>
 <div></div>
 <div></div>
 <div></div>
 <div></div>

 <div></div>
 <div></div>

Example 2: Selects all paragraphs, then slices the selection to include only the first element.

Javascript

$("p").slice(0, 1).wrapInner("");

Example 3: Selects all paragraphs, then slices the selection to include only the first and second element.

Javascript

$("p").slice(0, 2).wrapInner("");

Example 4: Selects all paragraphs, then slices the selection to include only the second element.

Javascript

$("p").slice(1, 2).wrapInner("");

Example 5: Selects all paragraphs, then slices the selection to include only the second and third element.

Javascript

$("p").slice(1).wrapInner("");

Example 6: Selects all paragraphs, then slices the selection to include only the third element.

Javascript

$("p").slice(-1).wrapInner("");

end

End the most recent filtering operation in the current chain and return the set of matched elements to its previous state.

end():jQuery

Most of jQuery's DOM traversal methods operate on a jQuery object instance and produce a new one, matching a different set of DOM
elements. When this happens, it is as if the new set of elements is pushed onto a stack that is maintained inside the object. Each successive
filtering method pushes a new element set onto the stack. If we need an older element set, we can use end() to pop the sets back off of the stack.

Suppose we have a couple short lists on a page:

<ul class="first">
 <li class="foo">list item 1

 list item 2
 <li class="bar">list item 3

<ul class="second">
 <li class="foo">list item 1
 list item 2
 <li class="bar">list item 3

The end() method is useful primarily when exploiting jQuery's chaining properties. When not using chaining, we can usually just call up a
previous object by variable name, so we don't need to manipulate the stack. With end(), though, we can string all the method calls together:

$('ul.first').find('.foo').css('background-color', 'red')
 .end().find('.bar').css('background-color', 'green');

This chain searches for items with the class foo within the first list only and turns their backgrounds red. Then end() returns the object to its
state before the call to find(), so the second find() looks for '.bar' inside <ul class="first">, not just inside that list's <li class="foo">, and
turns the matching elements' backgrounds green. The net result is that items 1 and 3 of the first list have a colored background, and none of the
items from the second list do.

A long jQuery chain can be visualized as a structured code block, with filtering methods providing the openings of nested blocks and end()
methods closing them:

$('ul.first').find('.foo')
 .css('background-color', 'red')
.end().find('.bar')
 .css('background-color', 'green')
.end();

The last end() is unnecessary, as we are discarding the jQuery object immediately thereafter. However, when the code is written in this form,
the end() provides visual symmetry and a sense of completion â€”making the program, at least to the eyes of some developers, more readable,
at the cost of a slight hit to performance as it is an additional function call.

Example 1: Selects all paragraphs, finds span elements inside these, and reverts the selection back to the paragraphs.

Javascript

 jQuery.fn.showTags = function (n) {
 var tags = this.map(function () {
 return this.tagName;
 })
 .get().join(", ");
 $("b:eq(" + n + ")").text(tags);
 return this;
 };

 $("p").showTags(0)
 .find("span")
 .showTags(1)
 .css("background", "yellow")
 .end()
 .showTags(2)
 .css("font-style", "italic");

CSS

 p, div { margin:1px; padding:1px; font-weight:bold;
 font-size:16px; }
 div { color:blue; }
 b { color:red; }

Added in version 1.2

HTML

<p>
 Hi there how are you doing?
 </p>

 <p>
 This span is one of
 several spans in this
 sentence.
 </p>

 <div>
 Tags in jQuery object initially:
 </div>
 <div>
 Tags in jQuery object after find:

 </div>
 <div>
 Tags in jQuery object after end:
 </div>

Example 2: Selects all paragraphs, finds span elements inside these, and reverts the selection back to the paragraphs.

Javascript

$("p").find("span").end().css("border", "2px red solid");

CSS

p { margin:10px; padding:10px; }

HTML

<p>Hello, how are you?</p>

andSelf

Add the previous set of elements on the stack to the current set.

andSelf():jQuery

As described in the discussion for .end(), jQuery objects maintain an internal stack that keeps track of changes to the matched set of elements.
When one of the DOM traversal methods is called, the new set of elements is pushed onto the stack. If the previous set of elements is desired as
well, .andSelf() can help.

Consider a page with a simple list on it:

 list item 1
 list item 2
 <li class="third-item">list item 3
 list item 4
 list item 5

The result of the following code is a red background behind items 3, 4 and 5:

$('li.third-item').nextAll().andSelf()
 .css('background-color', 'red');

First, the initial selector locates item 3, initializing the stack with the set containing just this item. The call to .nextAll() then pushes the set of
items 4 and 5 onto the stack. Finally, the .andSelf() invocation merges these two sets together, creating a jQuery object that points to all three
items in document order: {[<li.third-item>,,]}.

Example 1: Find all divs, and all the paragraphs inside of them, and give them both class names. Notice the div doesn't have the yellow
background color since it didn't use .andSelf().

Added in version 1.0

Javascript

 $("div").find("p").andSelf().addClass("border");
 $("div").find("p").addClass("background");

CSS

 p, div { margin:5px; padding:5px; }
 .border { border: 2px solid red; }
 .background { background:yellow; }

HTML

<div>
 <p>First Paragraph</p>
 <p>Second Paragraph</p>
 </div>

siblings

Get the siblings of each element in the set of matched elements, optionally filtered by a selector.

siblings(selector):jQuery

selector:Selector (optional) A string containing a selector expression to match elements against.

Given a jQuery object that represents a set of DOM elements, the .siblings() method allows us to search through the siblings of these
elements in the DOM tree and construct a new jQuery object from the matching elements.

The method optionally accepts a selector expression of the same type that we can pass to the $() function. If the selector is supplied, the
elements will be filtered by testing whether they match it.

Consider a page with a simple list on it:

 list item 1
 list item 2
 <li class="third-item">list item 3
 list item 4
 list item 5

If we begin at the third item, we can find its siblings:

$('li.third-item').siblings().css('background-color', 'red');

The result of this call is a red background behind items 1, 2, 4, and 5. Since we do not supply a selector expression, all of the siblings are part of
the object. If we had supplied one, only the matching items among these four would be included.

The original element is not included among the siblings, which is important to remember when we wish to find all elements at a particular level
of the DOM tree.

Example 1: Find the unique siblings of all yellow li elements in the 3 lists (including other yellow li elements if appropriate).

Javascript

 var len = $(".hilite").siblings()
 .css("color", "red")
 .length;
 $("b").text(len);

CSS

 ul { float:left; margin:5px; font-size:16px; font-weight:bold; }
 p { color:blue; margin:10px 20px; font-size:16px; padding:5px;
 font-weight:bolder; }
 .hilite { background:yellow; }

Added in version 1.2

HTML

 One

 Two
 <li class="hilite">Three
 Four

 Five
 Six
 Seven

 Eight
 <li class="hilite">Nine

 Ten
 <li class="hilite">Eleven

 <p>Unique siblings: </p>

Example 2: Find all siblings with a class "selected" of each div.

Javascript

$("p").siblings(".selected").css("background", "yellow");

HTML

<div>Hello</div>

 <p class="selected">Hello Again</p>
 <p>And Again</p>

prevAll

Get all preceding siblings of each element in the set of matched elements, optionally filtered by a selector.

prevAll(selector):jQuery

selector:Selector (optional) A string containing a selector expression to match elements against.

Given a jQuery object that represents a set of DOM elements, the .prevAll() method searches through the predecessors of these elements in the
DOM tree and construct a new jQuery object from the matching elements; the elements are returned in order beginning with the closest sibling.

The method optionally accepts a selector expression of the same type that we can pass to the $() function. If the selector is supplied, the
elements will be filtered by testing whether they match it.

Consider a page with a simple list on it:

 list item 1
 list item 2
 <li class="third-item">list item 3
 list item 4
 list item 5

If we begin at the third item, we can find the elements which come before it:

$('li.third-item').prevAll().css('background-color', 'red');

The result of this call is a red background behind items 1 and 2. Since we do not supply a selector expression, these preceding elements are
unequivocally included as part of the object. If we had supplied one, the elements would be tested for a match before they were included.

Example 1: Locate all the divs preceding the last div and give them a class.

Added in version 1.0

Javascript

$("div:last").prevAll().addClass("before");

CSS

 div { width:70px; height:70px; background:#abc;
 border:2px solid black; margin:10px; float:left; }
 div.before { border-color: red; }

HTML

<div></div>
 <div></div>
 <div></div>
 <div></div>

prev

Get the immediately preceding sibling of each element in the set of matched elements, optionally filtered by a selector.

prev(selector):jQuery

selector:Selector (optional) A string containing a selector expression to match elements against.

Given a jQuery object that represents a set of DOM elements, the .prev() method allows us to search through the predecessors of these
elements in the DOM tree and construct a new jQuery object from the matching elements.

The method optionally accepts a selector expression of the same type that we can pass to the $() function. If the selector is supplied, the
elements will be filtered by testing whether they match it.

Consider a page with a simple list on it:

 list item 1
 list item 2
 <li class="third-item">list item 3
 list item 4
 list item 5

If we begin at the third item, we can find the element which comes just before it:

$('li.third-item').prev().css('background-color', 'red');

The result of this call is a red background behind item 2. Since we do not supply a selector expression, this preceding element is unequivocally
included as part of the object. If we had supplied one, the element would be tested for a match before it was included.

Example 1: Find the very previous sibling of each div.

Javascript

 var $curr = $("#start");
 $curr.css("background", "#f99");
 $("button").click(function () {
 $curr = $curr.prev();
 $("div").css("background", "");
 $curr.css("background", "#f99");
 });

CSS

 div { width:40px; height:40px; margin:10px;
 float:left; border:2px blue solid;
 padding:2px; }
 span { font-size:14px; }
 p { clear:left; margin:10px; }

Added in version 1.0

HTML

<div></div>
 <div></div>
 <div>has child</div>

 <div></div>
 <div></div>
 <div></div>
 <div id="start"></div>

 <div></div>
 <p><button>Go to Prev</button></p>

Example 2: For each paragraph, find the very previous sibling that has a class "selected".

Javascript

$("p").prev(".selected").css("background", "yellow");

HTML

<div>Hello</div>

 <p class="selected">Hello Again</p>
 <p>And Again</p>

parents

Get the ancestors of each element in the current set of matched elements, optionally filtered by a selector.

parents(selector):jQuery

selector:Selector (optional) A string containing a selector expression to match elements against.

Given a jQuery object that represents a set of DOM elements, the .parents() method allows us to search through the ancestors of these
elements in the DOM tree and construct a new jQuery object from the matching elements ordered from immediate parent on up; the elements
are returned in order from the closest parent to the outer ones. The .parents() and .parent() methods are similar, except that the latter only
travels a single level up the DOM tree.

The method optionally accepts a selector expression of the same type that we can pass to the $() function. If the selector is supplied, the
elements will be filtered by testing whether they match it.

Consider a page with a basic nested list on it:

<ul class="level-1">
 <li class="item-i">I
 <li class="item-ii">II
 <ul class="level-2">
 <li class="item-a">A
 <li class="item-b">B
 <ul class="level-3">
 <li class="item-1">1
 <li class="item-2">2
 <li class="item-3">3

 <li class="item-c">C

 <li class="item-iii">III

If we begin at item A, we can find its ancestors:

$('li.item-a').parents().css('background-color', 'red');

The result of this call is a red background for the level-2 list, item II, and the level-1 list (and on up the DOM tree all the way to the <html>
element). Since we do not supply a selector expression, all of the ancestors are part of the returned jQuery object. If we had supplied one, only
the matching items among these would be included.

Example 1: Find all parent elements of each b.

Javascript

var parentEls = $("b").parents()
 .map(function () {
 return this.tagName;
 })
 .get().join(", ");
$("b").append("" + parentEls + "");

CSS

 b, span, p, html body {
 padding: .5em;
 border: 1px solid;
 }
 b { color:blue; }
 strong { color:red; }

HTML

<div>
 <p>

 My parents are:

 </p>
 </div>

Example 2: Click to find all unique div parent elements of each span.

Javascript

function showParents() {
 $("div").css("border-color", "white");
 var len = $("span.selected")
 .parents("div")
 .css("border", "2px red solid")
 .length;
 $("b").text("Unique div parents: " + len);
}
$("span").click(function () {
 $(this).toggleClass("selected");
 showParents();
});

CSS

 p, div, span {margin:2px; padding:1px; }
 div { border:2px white solid; }
 span { cursor:pointer; font-size:12px; }
 .selected { color:blue; }
 b { color:red; display:block; font-size:14px; }

HTML

<p>
 <div>
 <div>Hello</div>
 Hello Again

 </div>
 <div>
 And Hello Again
 </div>
 </p>

 Click Hellos to toggle their parents.

parent

Added in version 1.0

Get the parent of each element in the current set of matched elements, optionally filtered by a selector.

parent(selector):jQuery

selector:Selector (optional) A string containing a selector expression to match elements against.

Given a jQuery object that represents a set of DOM elements, the .parent() method allows us to search through the parents of these elements
in the DOM tree and construct a new jQuery object from the matching elements. The .parents() and .parent() methods are similar, except
that the latter only travels a single level up the DOM tree.

The method optionally accepts a selector expression of the same type that we can pass to the $() function. If the selector is supplied, the
elements will be filtered by testing whether they match it.

Consider a page with a basic nested list on it:

<ul class="level-1">
 <li class="item-i">I
 <li class="item-ii">II
 <ul class="level-2">
 <li class="item-a">A
 <li class="item-b">B
 <ul class="level-3">
 <li class="item-1">1
 <li class="item-2">2
 <li class="item-3">3

 <li class="item-c">C

 <li class="item-iii">III

If we begin at item A, we can find its parents:

$('li.item-a').parent().css('background-color', 'red');

The result of this call is a red background for the level-2 list. Since we do not supply a selector expression, the parent element is unequivocally
included as part of the object. If we had supplied one, the element would be tested for a match before it was included.

Example 1: Shows the parent of each element as (parent > child). Check the View Source to see the raw html.

Javascript

 $("*", document.body).each(function () {
 var parentTag = $(this).parent().get(0).tagName;
 $(this).prepend(document.createTextNode(parentTag + " > "));
 });

CSS

 div,p { margin:10px; }

Added in version 1.2.6

HTML

<div>div,
 span,
 b

 </div>
 <p>p,
 span,
 em

 </p>

 <div>div,
 strong,
 span,
 em,
 b,

 b
 </div>

Example 2: Find the parent element of each paragraph with a class "selected".

Javascript

$("p").parent(".selected").css("background", "yellow");

HTML

<div><p>Hello</p></div>

 <div class="selected"><p>Hello Again</p></div>

offsetParent

Get the closest ancestor element that is positioned.

offsetParent():jQuery

Given a jQuery object that represents a set of DOM elements, the .offsetParent() method allows us to search through the ancestors of these
elements in the DOM tree and construct a new jQuery object wrapped around the closest positioned ancestor. An element is said to be
positioned if it has a CSS position attribute of relative, absolute, or fixed. This information is useful for calculating offsets for performing
animations and placing objects on the page.

Consider a page with a basic nested list on it, with a positioned element:

<ul class="level-1">
 <li class="item-i">I
 <li class="item-ii" style="position: relative;">II
 <ul class="level-2">
 <li class="item-a">A
 <li class="item-b">B
 <ul class="level-3">
 <li class="item-1">1
 <li class="item-2">2
 <li class="item-3">3

 <li class="item-c">C

 <li class="item-iii">III

If we begin at item A, we can find its positioned ancestor:

$('li.item-a').offsetParent().css('background-color', 'red');

This will change the color of list item II, which is positioned.

Added in version 1.2

Example 1: Find the offsetParent of item "A."

Javascript

$('li.item-a').offsetParent().css('background-color', 'red');

HTML

 <ul class="level-1">
 <li class="item-i">I
 <li class="item-ii" style="position: relative;">II
 <ul class="level-2">
 <li class="item-a">A
 <li class="item-b">B
 <ul class="level-3">
 <li class="item-1">1
 <li class="item-2">2
 <li class="item-3">3

 <li class="item-c">C

 <li class="item-iii">III

nextAll

Get all following siblings of each element in the set of matched elements, optionally filtered by a selector.

nextAll(selector):jQuery

selector:String (optional) A string containing a selector expression to match elements against.

Given a jQuery object that represents a set of DOM elements, the .nextAll() method allows us to search through the successors of these
elements in the DOM tree and construct a new jQuery object from the matching elements.

The method optionally accepts a selector expression of the same type that we can pass to the $() function. If the selector is supplied, the
elements will be filtered by testing whether they match it.

Consider a page with a simple list on it:

 list item 1
 list item 2
 <li class="third-item">list item 3
 list item 4
 list item 5

If we begin at the third item, we can find the elements which come after it:

$('li.third-item').nextAll().css('background-color', 'red');

The result of this call is a red background behind items 4 and 5. Since we do not supply a selector expression, these following elements are
unequivocally included as part of the object. If we had supplied one, the elements would be tested for a match before they were included.

Example 1: Locate all the divs after the first and give them a class.

Javascript

$("div:first").nextAll().addClass("after");

CSS

 div { width: 80px; height: 80px; background: #abc;
 border: 2px solid black; margin: 10px; float: left; }
 div.after { border-color: red; }

Added in version 1.0

HTML

<div>first</div>
 <div>sibling<div>child</div></div>
 <div>sibling</div>

 <div>sibling</div>

Example 2: Locate all the paragraphs after the second child in the body and give them a class.

Javascript

 $(":nth-child(1)").nextAll("p").addClass("after");

CSS

 div, p { width: 60px; height: 60px; background: #abc;
 border: 2px solid black; margin: 10px; float: left; }
 .after { border-color: red; }

HTML

<p>p</p>

 <div>div</div>
 <p>p</p>
 <p>p</p>
 <div>div</div>

 <p>p</p>
 <div>div</div>

next

Get the immediately following sibling of each element in the set of matched elements. If a selector is provided, it retrieves the next sibling only
if it matches that selector.

next(selector):jQuery

selector:Selector (optional) A string containing a selector expression to match elements against.

Given a jQuery object that represents a set of DOM elements, the .next() method allows us to search through the immediately following
sibling of these elements in the DOM tree and construct a new jQuery object from the matching elements.

The method optionally accepts a selector expression of the same type that we can pass to the $() function. If the immediately following sibling
matches the selector, it remains in the newly constructed jQuery object; otherwise, it is excluded.

Consider a page with a simple list on it:

 list item 1
 list item 2
 <li class="third-item">list item 3
 list item 4
 list item 5

If we begin at the third item, we can find the element which comes just after it:

$('li.third-item').next().css('background-color', 'red');

The result of this call is a red background behind item 4. Since we do not supply a selector expression, this following element is unequivocally
included as part of the object. If we had supplied one, the element would be tested for a match before it was included.

Example 1: Find the very next sibling of each disabled button and change its text "this button is disabled".

Javascript

$("button[disabled]").next().text("this button is disabled");

Added in version 1.6

CSS

 span { color:blue; font-weight:bold; }
 button { width:100px; }

HTML

<div><button disabled="disabled">First</button> - </div>
 <div><button>Second</button> - </div>

 <div><button disabled="disabled">Third</button> - </div>

Example 2: Find the very next sibling of each paragraph. Keep only the ones with a class "selected".

Javascript

$("p").next(".selected").css("background", "yellow");

HTML

<p>Hello</p>

 <p class="selected">Hello Again</p>
 <div>And Again</div>

find

Get the descendants of each element in the current set of matched elements, filtered by a selector, jQuery object, or element.

find(element):jQuery

element:Element An element to match elements against.

Given a jQuery object that represents a set of DOM elements, the .find() method allows us to search through the descendants of these
elements in the DOM tree and construct a new jQuery object from the matching elements. The .find() and .children() methods are similar,
except that the latter only travels a single level down the DOM tree.

The first signature for the .find()method accepts a selector expression of the same type that we can pass to the $() function. The elements will
be filtered by testing whether they match this selector.

Consider a page with a basic nested list on it:

<ul class="level-1">
 <li class="item-i">I
 <li class="item-ii">II
 <ul class="level-2">
 <li class="item-a">A
 <li class="item-b">B
 <ul class="level-3">
 <li class="item-1">1
 <li class="item-2">2
 <li class="item-3">3

 <li class="item-c">C

 <li class="item-iii">III

If we begin at item II, we can find list items within it:

$('li.item-ii').find('li').css('background-color', 'red');

The result of this call is a red background on items A, B, 1, 2, 3, and C. Even though item II matches the selector expression, it is not included
in the results; only descendants are considered candidates for the match.

Unlike in the rest of the tree traversal methods, the selector expression is required in a call to .find(). If we need to retrieve all of
the descendant elements, we can pass in the universal selector '*' to accomplish this.

Selector context is implemented with the .find() method; therefore, $('li.item-ii').find('li') is equivalent to $('li', 'li.item-ii').

As of jQuery 1.6, we can also filter the selection with a given jQuery collection or element. With the same nested list as above, if we start with:

var $allListElements = $('li');

And then pass this jQuery object to find:

$('li.item-ii').find($allListElements);

This will return a jQuery collection which contains only the list elements that are descendants of item II.

Similarly, an element may also be passed to find:

var item1 = $('li.item-1')[0];
$('li.item-ii').find(item1).css('background-color', 'red');

The result of this call would be a red background on item 1.

Example 1: Starts with all paragraphs and searches for descendant span elements, same as $("p span")

Javascript

 $("p").find("span").css('color','red');

HTML

<p>Hello, how are you?</p>
<p>Me? I'm good.</p>

Example 2: A selection using a jQuery collection of all span tags. Only spans within p tags are changed to red while others are left blue.

CSS

 span { color: blue; }

Javascript

 var $spans = $('span');
 $("p").find($spans).css('color','red');

HTML

<p>Hello, how are you?</p>
 <p>Me? I'm good.</p>
 <div>Did you eat yet?</div>

Example 3: Add spans around each word then add a hover and italicize words with the letter t.

Javascript

 var newText = $("p").text().split(" ").join(" ");
 newText = "" + newText + "";

 $("p").html(newText)
 .find('span')
 .hover(function() {
 $(this).addClass("hilite");
 },
 function() { $(this).removeClass("hilite");
 })
 .end()
 .find(":contains('t')")
 .css({"font-style":"italic", "font-weight":"bolder"});

Added in version 1.2

CSS

 p { font-size:20px; width:200px; cursor:default;
 color:blue; font-weight:bold; margin:0 10px; }
 .hilite { background:yellow; }

HTML

<p>
 When the day is short
 find that which matters to you
 or stop believing
 </p>

contents

Get the children of each element in the set of matched elements, including text and comment nodes.

contents():jQuery

Given a jQuery object that represents a set of DOM elements, the .contents() method allows us to search through the immediate children of
these elements in the DOM tree and construct a new jQuery object from the matching elements. The .contents() and .children() methods are
similar, except that the former includes text nodes as well as HTML elements in the resulting jQuery object.

The .contents() method can also be used to get the content document of an iframe, if the iframe is on the same domain as the main page.

Consider a simple <div> with a number of text nodes, each of which is separated by two line break elements (
):

<div class="container">
 Lorem ipsum dolor sit amet, consectetur adipisicing elit, sed
 do eiusmod tempor incididunt ut labore et dolore magna aliqua.

 Ut enim ad minim veniam, quis nostrud exercitation ullamco
 laboris nisi ut aliquip ex ea commodo consequat.

 Duis aute irure dolor in reprehenderit in voluptate velit
 esse cillum dolore eu fugiat nulla pariatur.
</div>

We can employ the .contents() method to help convert this blob of text into three well-formed paragraphs:

$('.container').contents().filter(function() {
 return this.nodeType == 3;
})
 .wrap('<p></p>')
.end()
.filter('br')
 .remove();

This code first retrieves the contents of <div class="container"> and then filters it for text nodes, which are wrapped in paragraph tags. This is
accomplished by testing the .nodeType property of the element. This DOM property holds a numeric code indicating the node's type; text nodes
use the code 3. The contents are again filtered, this time for
 elements, and these elements are removed.

Example 1: Find all the text nodes inside a paragraph and wrap them with a bold tag.

Javascript

$("p").contents().filter(function(){ return this.nodeType != 1; }).wrap("");

HTML

<p>Hello John, how are you doing?</p>

Example 2: Change the background colour of links inside of an iframe.

Javascript

$("#frameDemo").contents().find("a").css("background-color","#BADA55");

Added in version 1.6

HTML

<iframe src="http://api.jquery.com/" width="80%" height="600" id='frameDemo'></iframe>

closest

Get the first ancestor element that matches the selector, beginning at the current element and progressing up through the DOM tree.

closest(element):jQuery

element:Element An element to match elements against.

Given a jQuery object that represents a set of DOM elements, the .closest() method allows us to search through these elements and their
ancestors in the DOM tree and construct a new jQuery object from the matching elements. The .parents() and .closest() methods are similar
in that they both traverse up the DOM tree. The differences between the two, though subtle, are significant:

.closest() .parents()

Begins with the current element Begins with the parent element

Travels up the DOM tree until it finds a
match for the supplied selector

Travels up the DOM tree to the document's root element, adding each ancestor element to a
temporary collection; it then filters that collection based on a selector if one is supplied

The returned jQuery object contains zero
or one element

The returned jQuery object contains zero, one, or multiple elements

<ul id="one" class="level-1">
 <li class="item-i">I
 <li id="ii" class="item-ii">II
 <ul class="level-2">
 <li class="item-a">A
 <li class="item-b">B
 <ul class="level-3">
 <li class="item-1">1
 <li class="item-2">2
 <li class="item-3">3

 <li class="item-c">C

 <li class="item-iii">III

Suppose we perform a search for elements starting at item A:

$('li.item-a').closest('ul')
 .css('background-color', 'red');

This will change the color of the level-2 , since it is the first encountered when traveling up the DOM tree.

Suppose we search for an element instead:

$('li.item-a').closest('li')
 .css('background-color', 'red');

This will change the color of list item A. The .closest() method begins its search with the element itself before progressing up the DOM tree,
and stops when item A matches the selector.

We can pass in a DOM element as the context within which to search for the closest element.

var listItemII = document.getElementById('ii');
$('li.item-a').closest('ul', listItemII)
 .css('background-color', 'red');
$('li.item-a').closest('#one', listItemII)
 .css('background-color', 'green');

This will change the color of the level-2 , because it is both the first ancestor of list item A and a descendant of list item II. It will not
change the color of the level-1 , however, because it is not a descendant of list item II.

Example 1: Show how event delegation can be done with closest. The closest list element toggles a yellow background when it or its descendent
is clicked.

Added in version 1.4

Javascript

 $(document).bind("click", function(e) {
 $(e.target).closest("li").toggleClass("hilight");
 });

CSS

 li { margin: 3px; padding: 3px; background: #EEEEEE; }
 li.hilight { background: yellow; }

HTML

 Click me!
 You can also Click me!

Example 2: Pass a jQuery object to closest. The closest list element toggles a yellow background when it or its descendent is clicked.

Javascript

 var $listElements = $("li").css("color", "blue");
 $(document).bind("click", function(e) {
 $(e.target).closest($listElements).toggleClass("hilight");
 });

CSS

 li { margin: 3px; padding: 3px; background: #EEEEEE; }
 li.hilight { background: yellow; }

HTML

 Click me!
 You can also Click me!

closest

Gets an array of all the elements and selectors matched against the current element up through the DOM tree.

closest(selectors, context):Array

selectors:Array An array or string containing a selector expression to match elements against (can also be a
jQuery object).

context:Element (optional) A DOM element within which a matching element may be found. If no context is
passed in then the context of the jQuery set will be used instead.

This method is primarily meant to be used internally or by plugin authors.

Example 1: Show how event delegation can be done with closest.

Javascript

 var close = $("li:first").closest(["ul", "body"]);
 $.each(close, function(i){
 $("li").eq(i).html(this.selector + ": " + this.elem.nodeName);
 });

CSS

HTML

Added in version 1.0

children

Get the children of each element in the set of matched elements, optionally filtered by a selector.

children(selector):jQuery

selector:Selector (optional) A string containing a selector expression to match elements against.

Given a jQuery object that represents a set of DOM elements, the .children() method allows us to search through the immediate children of
these elements in the DOM tree and construct a new jQuery object from the matching elements. The .find() and .children() methods are
similar, except that the latter only travels a single level down the DOM tree. Note also that like most jQuery methods, .children() does not
return text nodes; to get all children including text and comment nodes, use .contents().

The method optionally accepts a selector expression of the same type that we can pass to the $() function. If the selector is supplied, the
elements will be filtered by testing whether they match it.

Consider a page with a basic nested list on it:

<ul class="level-1">
 <li class="item-i">I
 <li class="item-ii">II
 <ul class="level-2">
 <li class="item-a">A
 <li class="item-b">B
 <ul class="level-3">
 <li class="item-1">1
 <li class="item-2">2
 <li class="item-3">3

 <li class="item-c">C

 <li class="item-iii">III

If we begin at the level-2 list, we can find its children:

$('ul.level-2').children().css('background-color', 'red');

The result of this call is a red background behind items A, B, and C. Since we do not supply a selector expression, all of the children are part of
the returned jQuery object. If we had supplied one, only the matching items among these three would be included.

Example 1: Find all children of the clicked element.

Javascript

 $("#container").click(function (e) {
 $("*").removeClass("hilite");
 var $kids = $(e.target).children();
 var len = $kids.addClass("hilite").length;

 $("#results span:first").text(len);
 $("#results span:last").text(e.target.tagName);

 e.preventDefault();
 return false;
 });

CSS

 body { font-size:16px; font-weight:bolder; }
 div { width:130px; height:82px; margin:10px; float:left;
 border:1px solid blue; padding:4px; }
 #container { width:auto; height:105px; margin:0; float:none;
 border:none; }
 .hilite { border-color:red; }
 #results { display:block; color:red; }
 p { margin:10px; border:1px solid transparent; }
 span { color:blue; border:1px solid transparent; }
 input { width:100px; }
 em { border:1px solid transparent; }
 a { border:1px solid transparent; }
 b { border:1px solid transparent; }
 button { border:1px solid transparent; }

HTML

<div id="container">

 <div>
 <p>This is the way we
 write the demo,</p>

 </div>
 <div>
 write the demo, <button>write
 the</button> demo,
 </div>

 <div>
 This the way we write the demo so

 <input type="text" value="early" /> in
 </div>
 <p>
 the morning.
 Found 0 children in TAG.

 </p>
 </div>

Example 2: Find all children of each div.

Javascript

$("div").children().css("border-bottom", "3px double red");

CSS

 body { font-size:16px; font-weight:bolder; }
 span { color:blue; }
 p { margin:5px 0; }

HTML

<p>Hello (this is a paragraph)</p>

 <div>Hello Again (this span is a child of the a div)</div>
 <p>And Again (in another paragraph)</p>

 <div>And One Last Time (most text directly in a div)</div>

Example 3: Find all children with a class "selected" of each div.

Javascript

$("div").children(".selected").css("color", "blue");

Added in version 1.4

CSS

 body { font-size:16px; font-weight:bolder; }
 p { margin:5px 0; }

HTML

<div>
 Hello
 <p class="selected">Hello Again</p>
 <div class="selected">And Again</div>

 <p>And One Last Time</p>
 </div>

add

Add elements to the set of matched elements.

add(selector, context):jQuery

selector:Selector A string representing a selector expression to find additional elements to add to the set of
matched elements.

context:Element The point in the document at which the selector should begin matching; similar to the context
argument of the $(selector, context) method.

Given a jQuery object that represents a set of DOM elements, the .add() method constructs a new jQuery object from the union of those
elements and the ones passed into the method. The argument to .add() can be pretty much anything that $() accepts, including a jQuery
selector expression, references to DOM elements, or an HTML snippet.

The updated set of elements can be used in a following (chained) method, or assigned to a variable for later use. For example:

$("p").add("div").addClass("widget");
var pdiv = $("p").add("div");

The following will not save the added elements, because the .add() method creates a new set and leaves the original set in pdiv unchanged:

var pdiv = $("p");
pdiv.add("div"); // WRONG, pdiv will not change

Consider a page with a simple list and a paragraph following it:

 list item 1
 list item 2
 list item 3

<p>a paragraph</p>

We can select the list items and then the paragraph by using either a selector or a reference to the DOM element itself as the .add() method's
argument:

$('li').add('p').css('background-color', 'red');

Or:

$('li').add(document.getElementsByTagName('p')[0])
 .css('background-color', 'red');

The result of this call is a red background behind all four elements. Using an HTML snippet as the .add() method's argument (as in the third
version), we can create additional elements on the fly and add those elements to the matched set of elements. Let's say, for example, that we
want to alter the background of the list items along with a newly created paragraph:

$('li').add('<p id="new">new paragraph</p>')
 .css('background-color', 'red');

Although the new paragraph has been created and its background color changed, it still does not appear on the page. To place it on the page, we
could add one of the insertion methods to the chain.

As of jQuery 1.4 the results from .add() will always be returned in document order (rather than a simple concatenation).

Note: To reverse the .add() you can use .not(elements | selector) to remove elements from the jQuery results, or .end() to return to the
selection before you added.

Example 1: Finds all divs and makes a border. Then adds all paragraphs to the jQuery object to set their backgrounds yellow.

Javascript

$("div").css("border", "2px solid red")
 .add("p")
 .css("background", "yellow");

CSS

 div { width:60px; height:60px; margin:10px; float:left; }
 p { clear:left; font-weight:bold; font-size:16px;
 color:blue; margin:0 10px; padding:2px; }

HTML

<div></div>

 <div></div>
 <div></div>
 <div></div>
 <div></div>
 <div></div>

 <p>Added this... (notice no border)</p>

Example 2: Adds more elements, matched by the given expression, to the set of matched elements.

Javascript

$("p").add("span").css("background", "yellow");

HTML

<p>Hello</p>Hello Again

Example 3: Adds more elements, created on the fly, to the set of matched elements.

Javascript

$("p").clone().add("Again").appendTo(document.body);

HTML

<p>Hello</p>

Example 4: Adds one or more Elements to the set of matched elements.

Javascript

$("p").add(document.getElementById("a")).css("background", "yellow");

HTML

<p>Hello</p>Hello Again

Example 5: Demonstrates how to add (or push) elements to an existing collection

Added in version 1.4

Javascript

var collection = $("p");
// capture the new collection
collection = collection.add(document.getElementById("a"));
collection.css("background", "yellow");

HTML

<p>Hello</p>Hello Again

not

Remove elements from the set of matched elements.

not(function(index)):jQuery

function(index):Function A function used as a test for each element in the set. this is the current DOM element.

Given a jQuery object that represents a set of DOM elements, the .not() method constructs a new jQuery object from a subset of the matching
elements. The supplied selector is tested against each element; the elements that don't match the selector will be included in the result.

Consider a page with a simple list on it:

 list item 1
 list item 2
 list item 3
 list item 4
 list item 5

We can apply this method to the set of list items:

$('li').not(':even').css('background-color', 'red');

The result of this call is a red background for items 2 and 4, as they do not match the selector (recall that :even and :odd use 0-based indexing).

Removing Specific Elements

The second version of the .not() method allows us to remove elements from the matched set, assuming we have found those elements
previously by some other means. For example, suppose our list had an id applied to one of its items:

 list item 1
 list item 2
 <li id="notli">list item 3
 list item 4
 list item 5

We can fetch the third list item using the native JavaScript getElementById() function, then remove it from a jQuery object:

$('li').not(document.getElementById('notli'))
 .css('background-color', 'red');

This statement changes the color of items 1, 2, 4, and 5. We could have accomplished the same thing with a simpler jQuery expression, but this
technique can be useful when, for example, other libraries provide references to plain DOM nodes.

As of jQuery 1.4, the .not() method can take a function as its argument in the same way that .filter() does. Elements for which the function
returns true are excluded from the filtered set; all other elements are included.

Example 1: Adds a border to divs that are not green or blue.

Javascript

 $("div").not(".green, #blueone")
 .css("border-color", "red");

Added in version 1.2

CSS

 div { width:50px; height:50px; margin:10px; float:left;
 background:yellow; border:2px solid white; }
 .green { background:#8f8; }
 .gray { background:#ccc; }
 #blueone { background:#99f; }

HTML

<div></div>
 <div id="blueone"></div>
 <div></div>
 <div class="green"></div>

 <div class="green"></div>
 <div class="gray"></div>
 <div></div>

Example 2: Removes the element with the ID "selected" from the set of all paragraphs.

Javascript

$("p").not($("#selected")[0])

Example 3: Removes the element with the ID "selected" from the set of all paragraphs.

Javascript

$("p").not("#selected")

Example 4: Removes all elements that match "div p.selected" from the total set of all paragraphs.

Javascript

$("p").not($("div p.selected"))

map

Pass each element in the current matched set through a function, producing a new jQuery object containing the return values.

map(callback(index, domElement)):jQuery

callback(index,
domElement):Function A function object that will be invoked for each element in the current set.

As the return value is a jQuery-wrapped array, it's very common to get() the returned object to work with a basic array.

The .map() method is particularly useful for getting or setting the value of a collection of elements. Consider a form with a set of checkboxes in
it:

<form method="post" action="">
 <fieldset>
 <div>
 <label for="two">2</label>
 <input type="checkbox" value="2" id="two" name="number[]">
 </div>
 <div>
 <label for="four">4</label>
 <input type="checkbox" value="4" id="four" name="number[]">
 </div>
 <div>
 <label for="six">6</label>
 <input type="checkbox" value="6" id="six" name="number[]">
 </div>
 <div>
 <label for="eight">8</label>
 <input type="checkbox" value="8" id="eight" name="number[]">
 </div>
 </fieldset>
</form>

We can get a comma-separated list of checkbox IDs:

$(':checkbox').map(function() {
 return this.id;
}).get().join(',');

The result of this call is the string, "two,four,six,eight".

Within the callback function, this refers to the current DOM element for each iteration. The function can return an individual data item or an
array of data items to be inserted into the resulting set. If an array is returned, the elements inside the array are inserted into the set. If the
function returns null or undefined, no element will be inserted.

Example 1: Build a list of all the values within a form.

Javascript

 $("p").append($("input").map(function(){
 return $(this).val();
 }).get().join(", "));

CSS

 p { color:red; }

HTML

<p>Values: </p>
 <form>
 <input type="text" name="name" value="John"/>

 <input type="text" name="password" value="password"/>
 <input type="text" name="url" value="http://ejohn.org/"/>

 </form>

Example 2: A contrived example to show some functionality.

Javascript

var mappedItems = $("li").map(function (index) {
 var replacement = $("").text($(this).text()).get(0);
 if (index == 0) {
 /* make the first item all caps */
 $(replacement).text($(replacement).text().toUpperCase());
 } else if (index == 1 || index == 3) {
 /* delete the second and fourth items */
 replacement = null;
 } else if (index == 2) {
 /* make two of the third item and add some text */
 replacement = [replacement,$("").get(0)];
 $(replacement[0]).append(" - A");
 $(replacement[1]).append("Extra - B");
 }

 /* replacement will be a dom element, null,
 or an array of dom elements */
 return replacement;
});
$("#results").append(mappedItems);

CSS

 body { font-size:16px; }
 ul { float:left; margin:0 30px; color:blue; }
 #results { color:red; }

Added in version 1.6

HTML

 First
 Second
 Third

 Fourth
 Fifth

 <ul id="results">

Example 3: Equalize the heights of the divs.

Javascript

$.fn.equalizeHeights = function() {
 var maxHeight = this.map(function(i,e) {
 return $(e).height();
 }).get();

 return this.height(Math.max.apply(this, maxHeight));
};

$('input').click(function(){
 $('div').equalizeHeights();
});

CSS

div { width: 40px; float:left; }
input { clear:left}

HTML

<input type="button" value="equalize div heights">

<div style="background:red; height: 40px; "></div>
<div style="background:green; height: 70px;"></div>
<div style="background:blue; height: 50px; "></div>

is

Check the current matched set of elements against a selector, element, or jQuery object and return true if at least one of these elements matches
the given arguments.

is(element):Boolean

element:Element An element to match the current set of elements against.

Unlike other filtering methods, .is() does not create a new jQuery object. Instead, it allows you to test the contents of a jQuery object without
modification. This is often useful inside callbacks, such as event handlers.

Suppose you have a list, with two of its items containing a child element:

 list item 1
 list item 2
 list item 3

You can attach a click handler to the element, and then limit the code to be triggered only when a list item itself, not one of its children, is
clicked:

$("ul").click(function(event) {
 var $target = $(event.target);
 if ($target.is("li")) {

 $target.css("background-color", "red");
 }
});

Now, when the user clicks on the word "list" in the first item or anywhere in the third item, the clicked list item will be given a red background.
However, when the user clicks on item 1 in the first item or anywhere in the second item, nothing will occur, because in those cases the target of
the event would be or , respectively.

Be aware that for selector strings with positional selectors such as :first, :gt(), or :even, the positional filtering is done against the jQuery
object passed to .is(), not against the containing document. So for the HTML shown above, an expression such as
$("li:first").is("li:last") returns true, but $("li:first-child").is("li:last-child") returns false.

Using a Function

The second form of this method evaluates expressions related to elements based on a function rather than a selector. For each element, if the
function returns true, .is() returns true as well. For example, given a somewhat more involved HTML snippet:

 list item 1 - one strong tag
 list item 2 -
 two strong tags
 list item 3
 list item 4
 list item 5

You can attach a click handler to every that evaluates the number of elements within the clicked at that time like so:

$("li").click(function() {
 var $li = $(this),
 isWithTwo = $li.is(function() {
 return $('strong', this).length === 2;
 });
 if (isWithTwo) {
 $li.css("background-color", "green");
 } else {
 $li.css("background-color", "red");
 }
});

Example 1: Shows a few ways is() can be used inside an event handler.

Javascript

 $("div").one('click', function () {
 if ($(this).is(":first-child")) {
 $("p").text("It's the first div.");
 } else if ($(this).is(".blue,.red")) {
 $("p").text("It's a blue or red div.");
 } else if ($(this).is(":contains('Peter')")) {
 $("p").text("It's Peter!");
 } else {
 $("p").html("It's nothing special.");
 }
 $("p").hide().slideDown("slow");
 $(this).css({"border-style": "inset", cursor:"default"});
 });

CSS

 div { width:60px; height:60px; margin:5px; float:left;
 border:4px outset; background:green; text-align:center;
 font-weight:bolder; cursor:pointer; }
 .blue { background:blue; }
 .red { background:red; }
 span { color:white; font-size:16px; }
 p { color:red; font-weight:bolder; background:yellow;
 margin:3px; clear:left; display:none; }

HTML

<div></div>
<div class="blue"></div>
<div></div>
<div class="red"></div>

<div>
Peter</div>
<div class="blue"></div>
<p> </p>

Example 2: Returns true, because the parent of the input is a form element.

Javascript

 var isFormParent = $("input[type='checkbox']").parent().is("form");
 $("div").text("isFormParent = " + isFormParent);

CSS

div { color:red; }

HTML

<form><input type="checkbox" /></form>
<div></div>

Example 3: Returns false, because the parent of the input is a p element.

Javascript

 var isFormParent = $("input[type='checkbox']").parent().is("form");
 $("div").text("isFormParent = " + isFormParent);

CSS

div { color:red; }

HTML

<form><p><input type="checkbox" /></p></form>
 <div></div>

Example 4: Checks against an existing collection of alternating list elements. Blue, alternating list elements slide up while others turn red.

Javascript

 var $alt = $("#browsers li:nth-child(2n)").css("background", "#00FFFF");
 $('li').click(function() {
 var $li = $(this);
 if ($li.is($alt)) {
 $li.slideUp();
 } else {
 $li.css("background", "red");
 }
 });

CSS

li { cursor:pointer; }

HTML

<ul id="browsers">
 Chrome
 Safari
 Firefox
 Opera

Added in version 1.4

Example 5: An alternate way to achieve the above example using an element rather than a jQuery object. Checks against an existing collection of
alternating list elements. Blue, alternating list elements slide up while others turn red.

Javascript

 var $alt = $("#browsers li:nth-child(2n)").css("background", "#00FFFF");
 $('li').click(function() {
 if ($alt.is(this)) {
 $(this).slideUp();
 } else {
 $(this).css("background", "red");
 }
 });

CSS

li { cursor:pointer; }

HTML

<ul id="browsers">
 Chrome
 Safari
 Firefox
 Opera

eq

Reduce the set of matched elements to the one at the specified index.

eq(-index):jQuery

-index:Integer An integer indicating the position of the element, counting backwards from the last element in
the set.

Given a jQuery object that represents a set of DOM elements, the .eq() method constructs a new jQuery object from one element within that
set. The supplied index identifies the position of this element in the set.

Consider a page with a simple list on it:

 list item 1
 list item 2
 list item 3
 list item 4
 list item 5

We can apply this method to the set of list items:

 $('li').eq(2).css('background-color', 'red');

The result of this call is a red background for item 3. Note that the supplied index is zero-based, and refers to the position of the element within
the jQuery object, not within the DOM tree.

Providing a negative number indicates a position starting from the end of the set, rather than the beginning. For example:

 $('li').eq(-2).css('background-color', 'red');

This time list item 4 is turned red, since it is two from the end of the set.

If an element cannot be found at the specified zero-based index, the method constructs a new jQuery object with an empty set and a length
property of 0.

 $('li').eq(5).css('background-color', 'red');

Here, none of the list items is turned red, since .eq(5) indicates the sixth of five list items.

Example 1: Turn the div with index 2 blue by adding an appropriate class.

Added in version 1.4

Javascript

 $("body").find("div").eq(2).addClass("blue");

CSS

 div { width:60px; height:60px; margin:10px; float:left;
 border:2px solid blue; }
 .blue { background:blue; }

HTML

<div></div>
 <div></div>
 <div></div>

 <div></div>
 <div></div>
 <div></div>

filter

Reduce the set of matched elements to those that match the selector or pass the function's test.

filter(jQuery object):jQuery

jQuery object:Object An existing jQuery object to match the current set of elements against.

Given a jQuery object that represents a set of DOM elements, the .filter() method constructs a new jQuery object from a subset of the
matching elements. The supplied selector is tested against each element; all elements matching the selector will be included in the result.

Consider a page with a simple list on it:

 list item 1 list item 2 list item 3 list item 4 list item 5 list item 6

We can apply this method to the set of list items:

 $('li').filter(':even').css('background-color', 'red');

The result of this call is a red background for items 1, 3, and 5, as they match the selector (recall that :even and :odd use 0-based indexing).

Using a Filter Function

The second form of this method allows us to filter elements against a function rather than a selector. For each element, if the function returns
true (or a "truthy" value), the element will be included in the filtered set; otherwise, it will be excluded. Suppose we have a somewhat more
involved HTML snippet:

 list item 1 -
 one strong tag
 list item 2 -
 two strong tags
 list item 3
 list item 4
 list item 5
 list item 6

We can select the list items, then filter them based on their contents:

$('li').filter(function(index) {
 return $('strong', this).length == 1;
}).css('background-color', 'red');

This code will alter the first list item only, as it contains exactly one tag. Within the filter function, this refers to each DOM element
in turn. The parameter passed to the function tells us the index of that DOM element within the set matched by the jQuery object.

We can also take advantage of the index passed through the function, which indicates the 0-based position of the element within the unfiltered
set of matched elements:

$('li').filter(function(index) {

 return index % 3 == 2;
}).css('background-color', 'red');

This alteration to the code will cause the third and sixth list items to be highlighted, as it uses the modulus operator (%) to select every item with
an index value that, when divided by 3, has a remainder of 2.

Example 1: Change the color of all divs; then add a border to those with a "middle" class.

Javascript

 $("div").css("background", "#c8ebcc")
 .filter(".middle")
 .css("border-color", "red");

CSS

 div { width:60px; height:60px; margin:5px; float:left;
 border:2px white solid;}

HTML

<div></div>

 <div class="middle"></div>
 <div class="middle"></div>
 <div class="middle"></div>
 <div class="middle"></div>

 <div></div>

Example 2: Change the color of all divs; then add a border to the second one (index == 1) and the div with an id of "fourth."

Javascript

 $("div").css("background", "#b4b0da")
 .filter(function (index) {
 return index == 1 || $(this).attr("id") == "fourth";
 })
 .css("border", "3px double red");

CSS

 div { width:60px; height:60px; margin:5px; float:left;
 border:3px white solid; }

HTML

 <div id="first"></div>
 <div id="second"></div>
 <div id="third"></div>

 <div id="fourth"></div>
 <div id="fifth"></div>
 <div id="sixth"></div>

Example 3: Select all divs and filter the selection with a DOM element, keeping only the one with an id of "unique".

Javascript

$("div").filter(document.getElementById("unique"))

Example 4: Select all divs and filter the selection with a jQuery object, keeping only the one with an id of "unique".

Javascript

$("div").filter($("#unique"))

Added in version 1.6

Added in version 1.6

Attributes

removeProp

Remove a property for the set of matched elements.

removeProp(propertyName):jQuery

propertyName:String The name of the property to set.

The .removeProp() method removes properties set by the .prop() method.

With some built-in properties of a DOM element or window object, browsers may generate an error if an attempt is made to remove the property.
jQuery first assigns the value undefined to the property and ignores any error the browser generates. In general, it is only necessary to remove
custom properties that have been set on an object, and not built-in (native) properties.

Note: Do not use this method to remove native properties such as checked, disabled, or selected. This will remove the property completely and,
once removed, cannot be added again to element. Use .prop() to set these properties to false instead.

Example 1: Set a numeric property on a paragraph and then remove it.

Javascript

var $para = $("p");
$para.prop("luggageCode", 1234);
$para.append("The secret luggage code is: ", String($para.prop("luggageCode")), ". ");
$para.removeProp("luggageCode");
$para.append("Now the secret luggage code is: ", String($para.prop("luggageCode")), ". ");

CSS

 img { padding:10px; }
 div { color:red; font-size:24px; }

HTML

 <p></p>

prop

Get the value of a property for the first element in the set of matched elements.

prop(propertyName):String

propertyName:String The name of the property to get.

The .prop() method gets the property value for only the first element in the matched set. It returns undefined for the value of a property that
has not been set, or if the matched set has no elements. To get the value for each element individually, use a looping construct such as jQuery's
.each() or .map() method.

The difference between attributes and properties can be important in specific situations. Before jQuery 1.6, the .attr() method sometimes took
property values into account when retrieving some attributes, which could cause inconsistent behavior. As of jQuery 1.6, the .prop() method
provides a way to explicitly retrieve property values, while .attr() retrieves attributes.

For example, selectedIndex, tagName, nodeName, nodeType, ownerDocument, defaultChecked, and defaultSelected should be retrieved and set
with the .prop() method. Prior to jQuery 1.6, these properties were retrievable with the .attr() method, but this was not within the scope of
attr. These do not have corresponding attributes and are only properties.

Concerning boolean attributes, consider a DOM element defined by the HTML markup <input type="checkbox" checked="checked" />, and
assume it is in a JavaScript variable named elem:

elem.checked true (Boolean) Will change with checkbox state
$(elem).prop("checked") true (Boolean) Will change with checkbox state

elem.getAttribute("checked") "checked" (String) Initial state of the checkbox; does not change

$(elem).attr("checked")(1.6) "checked" (String) Initial state of the checkbox; does not change

$(elem).attr("checked")(1.6.1+) "checked" (String) Will change with checkbox state

$(elem).attr("checked")(pre-1.6) true (Boolean) Changed with checkbox state

Added in version 1.6

According to the W3C forms specification, the checked attribute is a boolean attribute, which means the corresponding property is true if the
attribute is present at allâ€”even if, for example, the attribute has no value or an empty string value. The preferred cross-browser-compatible
way to determine if a checkbox is checked is to check for a "truthy" value on the element's property using one of the following:

if (elem.checked)

if ($(elem).prop("checked"))

if ($(elem).is(":checked"))

If using jQuery 1.6, the code if ($(elem).attr("checked")) will retrieve the actual content attribute, which does not change as the checkbox
is checked and unchecked. It is meant only to store the default or initial value of the checked property. To maintain backwards compatability,
the .attr() method in jQuery 1.6.1+ will retrieve and update the property for you so no code for boolean attributes is required to be changed to
.prop(). Nevertheless, the preferred way to retrieve a checked value is with one of the options listed above. To see how this works in the latest
jQuery, check/uncheck the checkbox in the example below.

Example 1: Display the checked property and attribute of a checkbox as it changes.

Javascript

$("input").change(function() {
 var $input = $(this);
 $("p").html(".attr('checked'): " + $input.attr('checked') + "
"
 + ".prop('checked'): " + $input.prop('checked') + "
"
 + ".is(':checked'): " + $input.is(':checked')) + "";
}).change();

CSS

 p { margin: 20px 0 0 }
 b { color: blue; }

HTML

<input id="check1" type="checkbox" checked="checked">
<label for="check1">Check me</label>
<p></p>

prop

Set one or more properties for the set of matched elements.

prop(propertyName, function(index, oldPropertyValue)):jQuery

propertyName:String The name of the property to set.
function(index,
oldPropertyValue):Function

A function returning the value to set. Receives the index position of the element in the set and
the old property value as arguments. Within the function, the keyword this refers to the current
element.

The .prop() method is a convenient way to set the value of propertiesâ€”especially when setting multiple properties, using values returned by a
function, or setting values on multiple elements at once. It should be used when setting selectedIndex, tagName, nodeName, nodeType,
ownerDocument, defaultChecked, or defaultSelected. Since jQuery 1.6, these properties can no longer be set with the .attr() method. They do
not have corresponding attributes and are only properties.

Properties generally affect the dynamic state of a DOM element without changing the serialized HTML attribute. Examples include the value
property of input elements, the disabled property of inputs and buttons, or the checked property of a checkbox. The .prop() method should be
used to set disabled and checked instead of the .attr() method. The .val() method should be used for getting and setting value.

$("input").prop("disabled", false);
$("input").prop("checked", true);
$("input").val("someValue");

Important: the .removeProp() method should not be used to set these properties to false. Once a native property is removed, it cannot be added
again. See .removeProp() for more information.

Computed property values

By using a function to set properties, you can compute the value based on other properties of the element. For example, to toggle all
checkboxes based off their individual values:

$("input[type='checkbox']").prop("checked", function(i, val) {
 return !val;
});

Added in version 1.0

Note: If nothing is returned in the setter function (ie. function(index, prop){}), or if undefined is returned, the current value is not changed.
This is useful for selectively setting values only when certain criteria are met.

Example 1: Disable all checkboxes on the page.

Javascript

$("input[type='checkbox']").prop({
 disabled: true
});

CSS

 img { padding:10px; }
 div { color:red; font-size:24px; }

HTML

 <input type="checkbox" checked="checked" />
 <input type="checkbox" />
 <input type="checkbox" />
 <input type="checkbox" checked="checked" />

val

Get the current value of the first element in the set of matched elements.

val():String, Number, Array

The .val() method is primarily used to get the values of form elements. In the case of <select multiple="multiple"> elements, the .val()
method returns an array containing each selected option.

For selects and checkboxes, you can also use the :selected and :checked selectors to get at values, for example:

$('select.foo option:selected').val(); // get the value from a dropdown select
$('select.foo').val(); // get the value from a dropdown select even easier
$('input:checkbox:checked').val(); // get the value from a checked checkbox
$('input:radio[name=bar]:checked').val(); // get the value from a set of radio buttons

Example 1: Get the single value from a single select and an array of values from a multiple select and display their values.

Javascript

 function displayVals() {
 var singleValues = $("#single").val();
 var multipleValues = $("#multiple").val() || [];
 $("p").html("Single: " +
 singleValues +
 " Multiple: " +
 multipleValues.join(", "));
 }

 $("select").change(displayVals);
 displayVals();

CSS

 p { color:red; margin:4px; }
 b { color:blue; }

Added in version 1.4

HTML

<p></p>
 <select id="single">
 <option>Single</option>
 <option>Single2</option>

 </select>
 <select id="multiple" multiple="multiple">
 <option selected="selected">Multiple</option>
 <option>Multiple2</option>

 <option selected="selected">Multiple3</option>
 </select>

Example 2: Find the value of an input box.

Javascript

 $("input").keyup(function () {
 var value = $(this).val();
 $("p").text(value);
 }).keyup();

CSS

 p { color:blue; margin:8px; }

HTML

<input type="text" value="some text"/>
 <p></p>

val

Set the value of each element in the set of matched elements.

val(function(index, value)):jQuery

function(index, value):Function A function returning the value to set. this is the current element. Receives the index position of
the element in the set and the old value as arguments.

This method is typically used to set the values of form fields.

Passing an array of element values allows matching <input type="checkbox">, <input type="radio"> and <option>s inside of n <select
multiple="multiple"> to be selected. In the case of <input type="radio">s that are part of a radio group and <select multiple="multiple">
the other elements will be deselected.

The .val() method allows us to set the value by passing in a function. As of jQuery 1.4, the function is passed two arguments, the current
element's index and its current value:

$('input:text.items').val(function(index, value) {
 return value + ' ' + this.className;
});

This example appends the string " items" to the text inputs' values.

Example 1: Set the value of an input box.

Javascript

 $("button").click(function () {
 var text = $(this).text();
 $("input").val(text);
 });

CSS

 button { margin:4px; cursor:pointer; }
 input { margin:4px; color:blue; }

HTML

<div>
 <button>Feed</button>
 <button>the</button>

 <button>Input</button>
 </div>
 <input type="text" value="click a button" />

Example 2: Use the function argument to modify the value of an input box.

Javascript

 $('input').bind('blur', function() {

 $(this).val(function(i, val) {
 return val.toUpperCase();
 });

 });

HTML

 <p>Type something and then click or tab out of the input.</p>
 <input type="text" value="type something" />

Example 3: Set a single select, a multiple select, checkboxes and a radio button .

Javascript

 $("#single").val("Single2");
 $("#multiple").val(["Multiple2", "Multiple3"]);
 $("input").val(["check1","check2", "radio1"]);

CSS

 body { color:blue; }

HTML

<select id="single">
 <option>Single</option>
 <option>Single2</option>
 </select>

 <select id="multiple" multiple="multiple">
 <option selected="selected">Multiple</option>
 <option>Multiple2</option>

 <option selected="selected">Multiple3</option>
 </select>

 <input type="checkbox" name="checkboxname" value="check1"/> check1
 <input type="checkbox" name="checkboxname" value="check2"/> check2
 <input type="radio" name="r" value="radio1"/> radio1
 <input type="radio" name="r" value="radio2"/> radio2

html

Get the HTML contents of the first element in the set of matched elements.

Added in version 1.0

Added in version 1.4

html():String

This method is not available on XML documents.

In an HTML document, .html() can be used to get the contents of any element. If the selector expression matches more than one element, only
the first match will have its HTML content returned. Consider this code:

$('div.demo-container').html();

In order for the following <div>'s content to be retrieved, it would have to be the first one with class="demo-container" in the document:

<div class="demo-container">
 <div class="demo-box">Demonstration Box</div>
</div>

The result would look like this:

<div class="demo-box">Demonstration Box</div>

This method uses the browser's innerHTML property. Some browsers may not return HTML that exactly replicates the HTML source in an
original document. For example, Internet Explorer sometimes leaves off the quotes around attribute values if they contain only alphanumeric
characters.

Example 1: Click a paragraph to convert it from html to text.

Javascript

 $("p").click(function () {
 var htmlStr = $(this).html();
 $(this).text(htmlStr);
 });

CSS

 p { margin:8px; font-size:20px; color:blue;
 cursor:pointer; }
 b { text-decoration:underline; }
 button { cursor:pointer; }

HTML

<p>

 Click to change the html
 </p>
 <p>

 to a text node.
 </p>
 <p>
 This <button name="nada">button</button> does nothing.
 </p>

html

Set the HTML contents of each element in the set of matched elements.

html(function(index, oldhtml)):jQuery

function(index, oldhtml):Function A function returning the HTML content to set. Receives the index position of the element in the
set and the old HTML value as arguments. jQuery empties the element before calling the
function; use the oldhtml argument to reference the previous content. Within the function, this
refers to the current element in the set.

The .html() method is not available in XML documents.

When .html() is used to set an element's content, any content that was in that element is completely replaced by the new content. Consider the
following HTML:

<div class="demo-container">
 <div class="demo-box">Demonstration Box</div>
</div>

Added in version 1.4

The content of <div class="demo-container"> can be set like this:

$('div.demo-container')
 .html('<p>All new content. You bet!</p>');

That line of code will replace everything inside <div class="demo-container">:

<div class="demo-container">
 <p>All new content. You bet!</p>
</div>

As of jQuery 1.4, the .html() method allows the HTML content to be set by passing in a function.

$('div.demo-container').html(function() {
 var emph = '' + $('p').length + ' paragraphs!';
 return '<p>All new content for ' + emph + '</p>';
});

Given a document with six paragraphs, this example will set the HTML of <div class="demo-container"> to <p>All new content for 6
paragraphs!</p>.

This method uses the browser's innerHTML property. Some browsers may not generate a DOM that exactly replicates the HTML source
provided. For example, Internet Explorer prior to version 8 will convert all href properties on links to absolute URLs, and Internet Explorer
prior to version 9 will not correctly handle HTML5 elements without the addition of a separate compatibility layer.

Example 1: Add some html to each div.

Javascript

$("div").html("Hello Again");

CSS

 .red { color:red; }

HTML

Hello
 <div></div>
 <div></div>
 <div></div>

Example 2: Add some html to each div then immediately do further manipulations to the inserted html.

Javascript

 $("div").html("Wow! Such excitement...");
 $("div b").append(document.createTextNode("!!!"))
 .css("color", "red");

CSS

 div { color:blue; font-size:18px; }

HTML

<div></div>
 <div></div>
 <div></div>

toggleClass

Add or remove one or more classes from each element in the set of matched elements, depending on either the class's presence or the value of
the switch argument.

toggleClass(function(index, class, switch), switch):jQuery

function(index, class,
switch):Function

A function that returns class names to be toggled in the class attribute of each element in the
matched set. Receives the index position of the element in the set, the old class value, and the
switch as arguments.

switch:Boolean (optional) A boolean value to determine whether the class should be added or removed.

This method takes one or more class names as its parameter. In the first version, if an element in the matched set of elements already has the
class, then it is removed; if an element does not have the class, then it is added. For example, we can apply .toggleClass() to a simple <div>:

<div class="tumble">Some text.</div>

The first time we apply $('div.tumble').toggleClass('bounce'), we get the following:

<div class="tumble bounce">Some text.</div>

The second time we apply $('div.tumble').toggleClass('bounce'), the <div> class is returned to the single tumble value:

<div class="tumble">Some text.</div>

Applying .toggleClass('bounce spin') to the same <div> alternates between <div class="tumble bounce spin"> and <div class="tumble">.

The second version of .toggleClass() uses the second parameter for determining whether the class should be added or removed. If this
parameter's value is true, then the class is added; if false, the class is removed. In essence, the statement:

$('#foo').toggleClass(className, addOrRemove);

is equivalent to:

if (addOrRemove) {
 $('#foo').addClass(className);
 }
 else {
 $('#foo').removeClass(className);
 }

As of jQuery 1.4, if no arguments are passed to .toggleClass(), all class names on the element the first time .toggleClass() is called will be
toggled. Also as of jQuery 1.4, the class name to be toggled can be determined by passing in a function.

$('div.foo').toggleClass(function() {
 if ($(this).parent().is('.bar')) {
 return 'happy';
 } else {
 return 'sad';
 }
});

This example will toggle the happy class for <div class="foo"> elements if their parent element has a class of bar; otherwise, it will toggle the
sad class.

Example 1: Toggle the class 'highlight' when a paragraph is clicked.

Javascript

 $("p").click(function () {
 $(this).toggleClass("highlight");
 });

CSS

 p { margin: 4px; font-size:16px; font-weight:bolder;
 cursor:pointer; }
 .blue { color:blue; }
 .highlight { background:yellow; }

HTML

<p class="blue">Click to toggle</p>
 <p class="blue highlight">highlight</p>
 <p class="blue">on these</p>
 <p class="blue">paragraphs</p>

Example 2: Add the "highlight" class to the clicked paragraph on every third click of that paragraph, remove it every first and second click.

Javascript

var count = 0;
$("p").each(function() {
 var $thisParagraph = $(this);
 var count = 0;
 $thisParagraph.click(function() {
 count++;
 $thisParagraph.find("span").text('clicks: ' + count);
 $thisParagraph.toggleClass("highlight", count % 3 == 0);
 });
});

CSS

 p { margin: 4px; font-size:16px; font-weight:bolder;
 cursor:pointer; }
 .blue { color:blue; }
 .highlight { background:red; }

HTML

<p class="blue">Click to toggle (clicks: 0)</p>
 <p class="blue highlight">highlight (clicks: 0)</p>
 <p class="blue">on these (clicks: 0)</p>

 <p class="blue">paragraphs (clicks: 0)</p>

Example 3: Toggle the class name(s) indicated on the buttons for each div.

CSS

.wrap > div { float: left; width: 100px; margin: 1em 1em 0 0;
 padding=left: 3px; border: 1px solid #abc; }
div.a { background-color: aqua; }
div.b { background-color: burlywood; }
div.c { background-color: cornsilk; }

HTML

<div class="buttons">
 <button>toggle</button>
 <button class="a">toggle a</button>
 <button class="a b">toggle a b</button>
 <button class="a b c">toggle a b c</button>
 reset
</div>
<div class="wrap">
 <div></div>
 <div class="b"></div>
 <div class="a b"></div>
 <div class="a c"></div>
</div>

Added in version 1.4

Javascript

var cls = ['', 'a', 'a b', 'a b c'];
var divs = $('div.wrap').children();
var appendClass = function() {
 divs.append(function() {
 return '<div>' + (this.className || 'none') + '</div>';
 });
};

appendClass();

$('button').bind('click', function() {
 var tc = this.className || undefined;
 divs.toggleClass(tc);
 appendClass();
});

$('a').bind('click', function(event) {
 event.preventDefault();
 divs.empty().each(function(i) {
 this.className = cls[i];
 });
 appendClass();
});

removeClass

Remove a single class, multiple classes, or all classes from each element in the set of matched elements.

removeClass(function(index, class)):jQuery

function(index, class):Function A function returning one or more space-separated class names to be removed. Receives the
index position of the element in the set and the old class value as arguments.

If a class name is included as a parameter, then only that class will be removed from the set of matched elements. If no class names are
specified in the parameter, all classes will be removed.

More than one class may be removed at a time, separated by a space, from the set of matched elements, like so:

$('p').removeClass('myClass yourClass')

This method is often used with .addClass() to switch elements' classes from one to another, like so:

$('p').removeClass('myClass noClass').addClass('yourClass');

Here, the myClass and noClass classes are removed from all paragraphs, while yourClass is added.

To replace all existing classes with another class, we can use .attr('class', 'newClass') instead.

As of jQuery 1.4, the .removeClass() method allows us to indicate the class to be removed by passing in a function.

$('li:last').removeClass(function() {
 return $(this).prev().attr('class');
 });

This example removes the class name of the penultimate from the last .

Example 1: Remove the class 'blue' from the matched elements.

Javascript

$("p:even").removeClass("blue");

CSS

 p { margin: 4px; font-size:16px; font-weight:bolder; }
 .blue { color:blue; }
 .under { text-decoration:underline; }
 .highlight { background:yellow; }

Added in version 1.2

HTML

<p class="blue under">Hello</p>
 <p class="blue under highlight">and</p>
 <p class="blue under">then</p>

 <p class="blue under">Goodbye</p>

Example 2: Remove the class 'blue' and 'under' from the matched elements.

Javascript

$("p:odd").removeClass("blue under");

CSS

 p { margin: 4px; font-size:16px; font-weight:bolder; }
 .blue { color:blue; }
 .under { text-decoration:underline; }
 .highlight { background:yellow; }

HTML

<p class="blue under">Hello</p>

 <p class="blue under highlight">and</p>
 <p class="blue under">then</p>
 <p class="blue under">Goodbye</p>

Example 3: Remove all the classes from the matched elements.

Javascript

$("p:eq(1)").removeClass();

CSS

 p { margin: 4px; font-size:16px; font-weight:bolder; }
 .blue { color:blue; }
 .under { text-decoration:underline; }
 .highlight { background:yellow; }

HTML

<p class="blue under">Hello</p>
 <p class="blue under highlight">and</p>
 <p class="blue under">then</p>

 <p class="blue under">Goodbye</p>

hasClass

Determine whether any of the matched elements are assigned the given class.

hasClass(className):Boolean

className:String The class name to search for.

Elements may have more than one class assigned to them. In HTML, this is represented by separating the class names with a space:

<div id="mydiv" class="foo bar"></div>

The .hasClass() method will return true if the class is assigned to an element, even if other classes also are. For example, given the HTML
above, the following will return true:

$('#mydiv').hasClass('foo')

Added in version 1.0

Added in version 1.0

As would:

$('#mydiv').hasClass('bar')

While this would return false:

$('#mydiv').hasClass('quux')

Example 1: Looks for the paragraph that contains 'selected' as a class.

Javascript

$("div#result1").append($("p:first").hasClass("selected").toString());
$("div#result2").append($("p:last").hasClass("selected").toString());
$("div#result3").append($("p").hasClass("selected").toString());

CSS

 p { margin: 8px; font-size:16px; }
 .selected { color:red; }

HTML

 <p>This paragraph is black and is the first paragraph.</p>
 <p class="selected">This paragraph is red and is the second paragraph.</p>

 <div id="result1">First paragraph has selected class: </div>
 <div id="result2">Second paragraph has selected class: </div>
 <div id="result3">At least one paragraph has selected class: </div>

removeAttr

Remove an attribute from each element in the set of matched elements.

removeAttr(attributeName):jQuery

attributeName:String An attribute to remove.

The .removeAttr() method uses the JavaScript removeAttribute() function, but it has the advantage of being able to be called directly on a
jQuery object and it accounts for different attribute naming across browsers.

Note:If attempting to remove an inline 'onclick' event handler using .removeAttr(), one may find that this doesn't achieve the desired effect in
Internet Explorer 6,7 or 8. Instead it is recommended to opt for using .prop() to achieve this as follows:

$element.prop("onclick", null);
console.log("onclick property: ", $element[0].onclick);

We may update the behavior of .removeAttr() at some point in the future to better handle this, however for the time being, the above should be
considered the standard cross-browser approach to this problem.

Example 1: Clicking the button enables the input next to it.

Javascript

$("button").click(function () {
 $(this).next().removeAttr("disabled")
 .focus()
 .val("editable now");
});

HTML

<button>Enable</button>
<input type="text" disabled="disabled" value="can't edit this" />

attr

Get the value of an attribute for the first element in the set of matched elements.

attr(attributeName):String

Added in version 1.1

attributeName:String The name of the attribute to get.

The .attr() method gets the attribute value for only the first element in the matched set. To get the value for each element individually, use a
looping construct such as jQuery's .each() or .map() method.

As of jQuery 1.6, the .attr() method returns undefined for attributes that have not been set. In addition, .attr() should not be used on plain
objects, arrays, the window, or the document. To retrieve and change DOM properties, use the .prop() method.

Using jQuery's .attr() method to get the value of an element's attribute has two main benefits:

Convenience: It can be called directly on a jQuery object and chained to other jQuery methods.1.
Cross-browser consistency: The values of some attributes are reported inconsistently across browsers, and even across versions of a
single browser. The .attr() method reduces such inconsistencies.

2.

Note: Attribute values are strings with the exception of a few attributes such as value and tabindex.

Example 1: Find the title attribute of the first in the page.

Javascript

var title = $("em").attr("title");
 $("div").text(title);

CSS

 em { color:blue; font-weight;bold; }
 div { color:red; }

HTML

<p>
 Once there was a <em title="huge, gigantic">large dinosaur...
</p>

 The title of the emphasis is:<div></div>

attr

Set one or more attributes for the set of matched elements.

attr(attributeName, function(index, attr)):jQuery

attributeName:String The name of the attribute to set.
function(index, attr):Function A function returning the value to set. this is the current element. Receives the index position of

the element in the set and the old attribute value as arguments.

The .attr() method is a convenient way to set the value of attributesâ€”especially when setting multiple attributes or using values returned by
a function. Consider the following image:

Setting a simple attribute

To change the alt attribute, simply pass the name of the attribute and its new value to the .attr() method:

$('#greatphoto').attr('alt', 'Beijing Brush Seller');

Add an attribute the same way:

$('#greatphoto')
.attr('title', 'Photo by Kelly Clark');

Setting several attributes at once

To change the alt attribute and add the title attribute at the same time, pass both sets of names and values into the method at once using a map
(JavaScript object literal). Each key-value pair in the map adds or modifies an attribute:

$('#greatphoto').attr({
 alt: 'Beijing Brush Seller',
 title: 'photo by Kelly Clark'

});

When setting multiple attributes, the quotes around attribute names are optional.

WARNING: When setting the 'class' attribute, you must always use quotes!

Note: jQuery prohibits changing the type attribute on an <input> or <button> element and will throw an error in all browsers. This is because
the type attribute cannot be changed in Internet Explorer.

Computed attribute values

By using a function to set attributes, you can compute the value based on other properties of the element. For example, to concatenate a new
value with an existing value:

$('#greatphoto').attr('title', function(i, val) {
 return val + ' - photo by Kelly Clark'
});

This use of a function to compute attribute values can be particularly useful when modifying the attributes of multiple elements at once.

Note: If nothing is returned in the setter function (ie. function(index, attr){}), or if undefined is returned, the current value is not changed.
This is useful for selectively setting values only when certain criteria are met.

Example 1: Set some attributes for all s in the page.

Javascript

$("img").attr({
 src: "/images/hat.gif",
 title: "jQuery",
 alt: "jQuery Logo"
});
$("div").text($("img").attr("alt"));

CSS

 img { padding:10px; }
 div { color:red; font-size:24px; }

HTML

 <div>Attribute of Ajax</div>

Example 2: Disable buttons greater than the 1st button.

Javascript

$("button:gt(1)").attr("disabled","disabled");

CSS

 button { margin:10px; }

HTML

 <button>0th Button</button>
 <button>1st Button</button>
 <button>2nd Button</button>

Example 3: Set the id for divs based on the position in the page.

Added in version 1.4

Javascript

$("div").attr("id", function (arr) {
 return "div-id" + arr;
})
.each(function () {
 $("span", this).html("(ID = '" + this.id + "')");
});

CSS

 div { color:blue; }
 span { color:red; }
 b { font-weight:bolder; }

HTML

 <div>Zero-th </div>
 <div>First </div>
 <div>Second </div>

Example 4: Set the src attribute from title attribute on the image.

Javascript

$("img").attr("src", function() {
 return "/images/" + this.title;
});

HTML

addClass

Adds the specified class(es) to each of the set of matched elements.

addClass(function(index, currentClass)):jQuery

function(index,
currentClass):Function

A function returning one or more space-separated class names to be added to the existing class
name(s). Receives the index position of the element in the set and the existing class name(s) as
arguments. Within the function, this refers to the current element in the set.

It's important to note that this method does not replace a class. It simply adds the class, appending it to any which may already be assigned to
the elements.

More than one class may be added at a time, separated by a space, to the set of matched elements, like so:

$("p").addClass("myClass yourClass");

This method is often used with .removeClass() to switch elements' classes from one to another, like so:

$("p").removeClass("myClass noClass").addClass("yourClass");

Here, the myClass and noClass classes are removed from all paragraphs, while yourClass is added.

As of jQuery 1.4, the .addClass() method's argument can receive a function.

$("ul li:last").addClass(function() {
 return "item-" + $(this).index();
});

Given an unordered list with five elements, this example adds the class "item-4" to the last .

Example 1: Adds the class "selected" to the matched elements.

Javascript

 $("p:last").addClass("selected");

CSS

 p { margin: 8px; font-size:16px; }
 .selected { color:blue; }
 .highlight { background:yellow; }

HTML

 <p>Hello</p>
 <p>and</p>
 <p>Goodbye</p>

Example 2: Adds the classes "selected" and "highlight" to the matched elements.

Javascript

 $("p:last").addClass("selected highlight");

CSS

 p { margin: 8px; font-size:16px; }
 .selected { color:red; }
 .highlight { background:yellow; }

HTML

<p>Hello</p>
 <p>and</p>
 <p>Goodbye</p>

Example 3: Pass in a function to .addClass() to add the "green" class to a div that already has a "red" class.

Javascript

 $("div").addClass(function(index, currentClass) {
 var addedClass;

 if (currentClass === "red") {
 addedClass = "green";
 $("p").text("There is one green div");
 }

 return addedClass;
 });

CSS

 div { background: white; }
 .red { background: red; }
 .red.green { background: green; }

HTML

 <div>This div should be white</div>
 <div class="red">This div will be green because it now has the "green" and "red" classes.
 It would be red if the addClass function failed.</div>
 <div>This div should be white</div>
 <p>There are zero green divs</p>

Added in version 1.4.3

CSS

jQuery.cssHooks

Hook directly into jQuery to override how particular CSS properties are retrieved or set, normalize CSS property naming, or create custom
properties.

The $.cssHooks object provides a way to define functions for getting and setting particular CSS values. It can also be used to create new
cssHooks for normalizing CSS3 features such as box shadows and gradients.

For example, some versions of Webkit-based browsers require -webkit-border-radius to set the border-radius on an element, while earlier
Firefox versions require -moz-border-radius. A cssHook can normalize these vendor-prefixed properties to let .css() accept a single, standard
property name (border-radius, or with DOM property syntax, borderRadius).

In addition to providing fine-grained control over how specific style properties are handled, $.cssHooks also extends the set of properties
available to the .animate() method.

Defining a new cssHook is straight-forward. The skeleton template below can serve as a guide to creating your own.

(function($) {
 // first, check to see if cssHooks are supported
 if (!$.cssHooks) {
 // if not, output an error message
 throw("jQuery 1.4.3 or above is required for this plugin to work");
 return;
 }

 $.cssHooks["someCSSProp"] = {
 get: function(elem, computed, extra) {
 // handle getting the CSS property
 },
 set: function(elem, value) {
 // handle setting the CSS value
 }
 };
})(jQuery);

Feature Testing

Before normalizing a vendor-specific CSS property, first determine whether the browser supports the standard property or a vendor-prefixed
variation. For example, to check for support of the border-radius property, see if any variation is a member of a temporary element's style
object.

(function($) {
 function styleSupport(prop) {
 var vendorProp, supportedProp,

 // capitalize first character of the prop to test vendor prefix
 capProp = prop.charAt(0).toUpperCase() + prop.slice(1),
 prefixes = ["Moz", "Webkit", "O", "ms"],
 div = document.createElement("div");

 if (prop in div.style) {

 // browser supports standard CSS property name
 supportedProp = prop;
 } else {

 // otherwise test support for vendor-prefixed property names
 for (var i = 0; i < prefixes.length; i++) {
 vendorProp = prefixes[i] + capProp;
 if (vendorProp in div.style) {
 supportedProp = vendorProp;
 break;
 }
 }
 }

 // avoid memory leak in IE
 div = null;

 // add property to $.support so it can be accessed elsewhere
 $.support[prop] = supportedProp;

 return supportedProp;

 }

 // call the function, e.g. testing for "border-radius" support:
 styleSupport("borderRadius");
})(jQuery);

Defining a complete cssHook

To define a complete cssHook, combine the support test with a filled-out version of the skeleton template provided in the first example:

(function($) {
 if (!$.cssHooks) {
 throw("jQuery 1.4.3+ is needed for this plugin to work");
 return;
 }

 function styleSupport(prop) {
 var vendorProp, supportedProp,
 capProp = prop.charAt(0).toUpperCase() + prop.slice(1),
 prefixes = ["Moz", "Webkit", "O", "ms"],
 div = document.createElement("div");

 if (prop in div.style) {
 supportedProp = prop;
 } else {
 for (var i = 0; i < prefixes.length; i++) {
 vendorProp = prefixes[i] + capProp;
 if (vendorProp in div.style) {
 supportedProp = vendorProp;
 break;
 }
 }
 }

 div = null;
 $.support[prop] = supportedProp
 return supportedProp;
 }

 var borderRadius = styleSupport("borderRadius");

 // Set cssHooks only for browsers that
 // support a vendor-prefixed border radius
 if (borderRadius && borderRadius !== "borderRadius") {
 $.cssHook.borderRadius = {
 get: function(elem, computed, extra) {
 return $.css(elem, borderRadius);
 },
 set: function(elem, value) {
 elem.style[borderRadius] = value;
 }
 };
 }
})(jQuery);

You can then set the border radius in a supported browser using either the DOM (camelCased) style or the CSS (hyphenated) style:

$("#element").css("borderRadius", "10px");
$("#another").css("border-radius", "20px");

If the browser lacks support for any form of the CSS property, vendor-prefixed or not, the style is not applied to the element. However, if the
browser supports a proprietary alternative, it can be applied to the cssHooks instead.

 (function($) {
 // feature test for support of a CSS property
 // and a proprietary alternative
 // ...

 if ($.support.someCSSProp && $.support.someCSSProp !== "someCSSProp") {

 // Set cssHooks for browsers that
 // support only a vendor-prefixed someCSSProp
 $.cssHook.someCSSProp = {
 get: function(elem, computed, extra) {
 return $.css(elem, $.support.someCSSProp);
 },
 set: function(elem, value) {
 elem.style[$.support.someCSSProp] = value;

Added in version 1.2.6

 }
 };
 } else if (supportsProprietaryAlternative) {
 $.cssHook.someCSSProp = {
 get: function(elem, computed, extra) {
 // Handle crazy conversion from the proprietary alternative
 },
 set: function(elem, value) {
 // Handle crazy conversion to the proprietary alternative
 }
 }
 }

})(jQuery);

Special units

By default, jQuery adds a "px" unit to the values passed to the .css() method. This behavior can be prevented by adding the property to the
jQuery.cssNumber object

$.cssNumber["someCSSProp"] = true;

Animating with cssHooks

A cssHook can also hook into jQuery's animation mechanism by adding a property to the jQuery.fx.step object:

$.fx.step["someCSSProp"] = function(fx){
 $.cssHooks["someCSSProp"].set(fx.elem, fx.now + fx.unit);
};

Note that this works best for simple numeric-value animations. More custom code may be required depending on the CSS property, the type of
value it returns, and the animation's complexity.

outerWidth

Get the current computed width for the first element in the set of matched elements, including padding and border.

outerWidth(includeMargin):Integer

includeMargin:Boolean (optional) A Boolean indicating whether to include the element's margin in the calculation.

Returns the width of the element, along with left and right padding, border, and optionally margin, in pixels.

If includeMargin is omitted or false, the padding and border are included in the calculation; if true, the margin is also included.

This method is not applicable to window and document objects; for these, use .width() instead.

Example 1: Get the outerWidth of a paragraph.

Javascript

var p = $("p:first");
$("p:last").text("outerWidth:" + p.outerWidth()+ " , outerWidth(true):" + p.outerWidth(true));

CSS

 p { margin:10px;padding:5px;border:2px solid #666; }

Added in version 1.2.6

Added in version 1.2.6

HTML

<p>Hello</p><p></p>

outerHeight

Get the current computed height for the first element in the set of matched elements, including padding, border, and optionally margin.

outerHeight(includeMargin):Integer

includeMargin:Boolean (optional) A Boolean indicating whether to include the element's margin in the calculation.

The top and bottom padding and border are always included in the .outerHeight() calculation; if the includeMargin argument is set to true, the
margin (top and bottom) is also included.

This method is not applicable to window and document objects; for these, use .height() instead.

Example 1: Get the outerHeight of a paragraph.

Javascript

var p = $("p:first");
$("p:last").text("outerHeight:" + p.outerHeight() + " , outerHeight(true):" + p.outerHeight(true));

CSS

p { margin:10px;padding:5px;border:2px solid #666; }

HTML

<p>Hello</p><p></p>

innerWidth

Get the current computed width for the first element in the set of matched elements, including padding but not border.

innerWidth():Integer

This method returns the width of the element, including left and right padding, in pixels.

This method is not applicable to window and document objects; for these, use .width() instead.

Example 1: Get the innerWidth of a paragraph.

Javascript

var p = $("p:first");
$("p:last").text("innerWidth:" + p.innerWidth());

Added in version 1.2.6

Added in version 1.0

CSS

p { margin:10px;padding:5px;border:2px solid #666; }

HTML

<p>Hello</p><p></p>

innerHeight

Get the current computed height for the first element in the set of matched elements, including padding but not border.

innerHeight():Integer

This method returns the height of the element, including top and bottom padding, in pixels.

This method is not applicable to window and document objects; for these, use .height() instead.

Example 1: Get the innerHeight of a paragraph.

Javascript

var p = $("p:first");
$("p:last").text("innerHeight:" + p.innerHeight());

CSS

p { margin:10px;padding:5px;border:2px solid #666; }

HTML

<p>Hello</p><p></p>

width

Get the current computed width for the first element in the set of matched elements.

width():Integer

The difference between .css(width) and .width() is that the latter returns a unit-less pixel value (for example, 400) while the former returns a
value with units intact (for example, 400px). The .width() method is recommended when an element's width needs to be used in a mathematical
calculation.

This method is also able to find the width of the window and document.

$(window).width(); // returns width of browser viewport
$(document).width(); // returns width of HTML document

Note that .width() will always return the content width, regardless of the value of the CSS box-sizing property.

Added in version 1.4.1

Example 1: Show various widths. Note the values are from the iframe so might be smaller than you expected. The yellow highlight shows the
iframe body.

Javascript

 function showWidth(ele, w) {
 $("div").text("The width for the " + ele +
 " is " + w + "px.");
 }
 $("#getp").click(function () {
 showWidth("paragraph", $("p").width());
 });
 $("#getd").click(function () {
 showWidth("document", $(document).width());
 });
 $("#getw").click(function () {
 showWidth("window", $(window).width());
 });

CSS

 body { background:yellow; }
 button { font-size:12px; margin:2px; }
 p { width:150px; border:1px red solid; }
 div { color:red; font-weight:bold; }

HTML

<button id="getp">Get Paragraph Width</button>
 <button id="getd">Get Document Width</button>
 <button id="getw">Get Window Width</button>

 <div> </div>
 <p>
 Sample paragraph to test width
 </p>

width

Set the CSS width of each element in the set of matched elements.

width(function(index, width)):jQuery

function(index, width):Function A function returning the width to set. Receives the index position of the element in the set and
the old width as arguments. Within the function, this refers to the current element in the set.

When calling .width('value'), the value can be either a string (number and unit) or a number. If only a number is provided for the value,
jQuery assumes a pixel unit. If a string is provided, however, any valid CSS measurement may be used for the width (such as 100px, 50%, or
auto). Note that in modern browsers, the CSS width property does not include padding, border, or margin, unless the box-sizing CSS property
is used.

If no explicit unit was specified (like 'em' or '%') then "px" is concatenated to the value.

Note that .width('value') sets the width of the box in accordance with the CSS box-sizing property. Changing this property to border-box will
cause this function to change the outerWidth of the box instead of the content width.

Example 1: To set the width of each div on click to 30px plus a color change.

Javascript

 $("div").one('click', function () {
 $(this).width(30)
 .css({cursor:"auto", "background-color":"blue"});
 });

Added in version 1.0

CSS

 div { width:70px; height:50px; float:left; margin:5px;
 background:red; cursor:pointer; }

HTML

<div></div>
 <div>d</div>

 <div>d</div>
 <div>d</div>
 <div>d</div>

height

Get the current computed height for the first element in the set of matched elements.

height():Integer

The difference between .css('height') and .height() is that the latter returns a unit-less pixel value (for example, 400) while the former
returns a value with units intact (for example, 400px). The .height() method is recommended when an element's height needs to be used in a
mathematical calculation.

This method is also able to find the height of the window and document.

$(window).height(); // returns height of browser viewport
$(document).height(); // returns height of HTML document

Note that .height() will always return the content height, regardless of the value of the CSS box-sizing property.

Example 1: Show various heights. Note the values are from the iframe so might be smaller than you expected. The yellow highlight shows the
iframe body.

Javascript

 function showHeight(ele, h) {
 $("div").text("The height for the " + ele +
 " is " + h + "px.");
 }
 $("#getp").click(function () {
 showHeight("paragraph", $("p").height());
 });
 $("#getd").click(function () {
 showHeight("document", $(document).height());
 });
 $("#getw").click(function () {
 showHeight("window", $(window).height());
 });

CSS

 body { background:yellow; }
 button { font-size:12px; margin:2px; }
 p { width:150px; border:1px red solid; }
 div { color:red; font-weight:bold; }

Added in version 1.4.1

Added in version 1.2.6

HTML

<button id="getp">Get Paragraph Height</button>
 <button id="getd">Get Document Height</button>
 <button id="getw">Get Window Height</button>

 <div> </div>
 <p>
 Sample paragraph to test height
 </p>

height

Set the CSS height of every matched element.

height(function(index, height)):jQuery

function(index, height):Function A function returning the height to set. Receives the index position of the element in the set and
the old height as arguments. Within the function, this refers to the current element in the set.

When calling .height(value), the value can be either a string (number and unit) or a number. If only a number is provided for the value, jQuery
assumes a pixel unit. If a string is provided, however, a valid CSS measurement must be provided for the height (such as 100px, 50%, or auto).
Note that in modern browsers, the CSS height property does not include padding, border, or margin.

If no explicit unit was specified (like 'em' or '%') then "px" is concatenated to the value.

Note that .height(value) sets the height of the box in accordance with the CSS box-sizing property. Changing this property to border-box will
cause this function to change the outerHeight of the box instead of the content height.

Example 1: To set the height of each div on click to 30px plus a color change.

Javascript

$("div").one('click', function () {
 $(this).height(30)
 .css({cursor:"auto", backgroundColor:"green"});
 });

CSS

div { width:50px; height:70px; float:left; margin:5px;
 background:rgb(255,140,0); cursor:pointer; }

HTML

<div></div>
 <div></div>

 <div></div>
 <div></div>
 <div></div>

scrollLeft

Get the current horizontal position of the scroll bar for the first element in the set of matched elements.

scrollLeft():Integer

The horizontal scroll position is the same as the number of pixels that are hidden from view above the scrollable area. If the scroll bar is at the
very left, or if the element is not scrollable, this number will be 0.

Example 1: Get the scrollLeft of a paragraph.

Javascript

var p = $("p:first");
$("p:last").text("scrollLeft:" + p.scrollLeft());

Added in version 1.2.6

Added in version 1.2.6

CSS

 p { margin:10px;padding:5px;border:2px solid #666; }

HTML

<p>Hello</p><p></p>

scrollLeft

Set the current horizontal position of the scroll bar for each of the set of matched elements.

scrollLeft(value):jQuery

value:Number An integer indicating the new position to set the scroll bar to.

The horizontal scroll position is the same as the number of pixels that are hidden from view above the scrollable area. Setting the scrollLeft
positions the horizontal scroll of each matched element.

Example 1: Set the scrollLeft of a div.

Javascript

$("div.demo").scrollLeft(300);

CSS

 div.demo {
 background:#CCCCCC none repeat scroll 0 0;
 border:3px solid #666666;
 margin:5px;
 padding:5px;
 position:relative;
 width:200px;
 height:100px;
 overflow:auto;
 }
 p { margin:10px;padding:5px;border:2px solid #666;width:1000px;height:1000px; }

HTML

<div class="demo"><h1>lalala</h1><p>Hello</p></div>

scrollTop

Get the current vertical position of the scroll bar for the first element in the set of matched elements.

scrollTop():Integer

The vertical scroll position is the same as the number of pixels that are hidden from view above the scrollable area. If the scroll bar is at the
very top, or if the element is not scrollable, this number will be 0.

Example 1: Get the scrollTop of a paragraph.

Javascript

var p = $("p:first");
$("p:last").text("scrollTop:" + p.scrollTop());

CSS

 p { margin:10px;padding:5px;border:2px solid #666; }

Added in version 1.2.6

Added in version 1.2

HTML

<p>Hello</p><p></p>

scrollTop

Set the current vertical position of the scroll bar for each of the set of matched elements.

scrollTop(value):jQuery

value:Number An integer indicating the new position to set the scroll bar to.

The vertical scroll position is the same as the number of pixels that are hidden from view above the scrollable area. Setting the scrollTop
positions the vertical scroll of each matched element.

Example 1: Set the scrollTop of a div.

Javascript

$("div.demo").scrollTop(300);

CSS

div.demo {
background:#CCCCCC none repeat scroll 0 0;
border:3px solid #666666;
margin:5px;
padding:5px;
position:relative;
width:200px;
height:100px;
overflow:auto;
}
 p { margin:10px;padding:5px;border:2px solid #666;width:1000px;height:1000px; }

HTML

<div class="demo"><h1>lalala</h1><p>Hello</p></div>

position

Get the current coordinates of the first element in the set of matched elements, relative to the offset parent.

position():Object

The .position() method allows us to retrieve the current position of an element relative to the offset parent. Contrast this with .offset(),
which retrieves the current position relative to the document. When positioning a new element near another one and within the same containing
DOM element, .position() is the more useful.

Returns an object containing the properties top and left.

Example 1: Access the position of the second paragraph:

Javascript

var p = $("p:first");
var position = p.position();
$("p:last").text("left: " + position.left + ", top: " + position.top);

CSS

 div { padding: 15px;}
 p { margin-left:10px; }

Added in version 1.2

HTML

<div>
 <p>Hello</p>
</div>
<p></p>

offset

Get the current coordinates of the first element in the set of matched elements, relative to the document.

offset():Object

The .offset() method allows us to retrieve the current position of an element relative to the document. Contrast this with .position(), which
retrieves the current position relative to the offset parent. When positioning a new element on top of an existing one for global manipulation (in
particular, for implementing drag-and-drop), .offset() is the more useful.

.offset() returns an object containing the properties top and left.

Note: jQuery does not support getting the offset coordinates of hidden elements or accounting for borders, margins, or padding set
on the body element.

Example 1: Access the offset of the second paragraph:

Javascript

var p = $("p:last");
var offset = p.offset();
p.html("left: " + offset.left + ", top: " + offset.top);

CSS

p { margin-left:10px; }

HTML

<p>Hello</p><p>2nd Paragraph</p>

Example 2: Click to see the offset.

Javascript

$("*", document.body).click(function (e) {
 var offset = $(this).offset();
 e.stopPropagation();
 $("#result").text(this.tagName + " coords (" + offset.left + ", " +
 offset.top + ")");
});

CSS

p { margin-left:10px; color:blue; width:200px;
 cursor:pointer; }
span { color:red; cursor:pointer; }
div.abs { width:50px; height:50px; position:absolute;
 left:220px; top:35px; background-color:green;
 cursor:pointer; }

Added in version 1.4

Added in version 1.0

HTML

<div id="result">Click an element.</div>
<p>
 This is the best way to find an offset.
</p>

<div class="abs">
</div>

offset

Set the current coordinates of every element in the set of matched elements, relative to the document.

offset(function(index, coords)):jQuery

function(index, coords):Function A function to return the coordinates to set. Receives the index of the element in the collection
as the first argument and the current coordinates as the second argument. The function should
return an object with the new top and left properties.

The .offset() setter method allows us to reposition an element. The element's position is specified relative to the document. If the element's
position style property is currently static, it will be set to relative to allow for this repositioning.

Example 1: Set the offset of the second paragraph:

Javascript

$("p:last").offset({ top: 10, left: 30 });

CSS

p { margin-left:10px; }

HTML

<p>Hello</p><p>2nd Paragraph</p>

css

Get the value of a style property for the first element in the set of matched elements.

css(propertyName):String

propertyName:String A CSS property.

The .css() method is a convenient way to get a style property from the first matched element, especially in light of the different ways browsers
access most of those properties (the getComputedStyle() method in standards-based browsers versus the currentStyle and runtimeStyle
properties in Internet Explorer) and the different terms browsers use for certain properties. For example, Internet Explorer's DOM
implementation refers to the float property as styleFloat, while W3C standards-compliant browsers refer to it as cssFloat. The .css()
method accounts for such differences, producing the same result no matter which term we use. For example, an element that is floated left will
return the string left for each of the following three lines:

$('div.left').css('float');1.
$('div.left').css('cssFloat');2.
$('div.left').css('styleFloat');3.

Also, jQuery can equally interpret the CSS and DOM formatting of multiple-word properties. For example, jQuery understands and returns the
correct value for both .css('background-color') and .css('backgroundColor'). Different browsers may return CSS color values that are
logically but not textually equal, e.g., #FFF, #ffffff, and rgb(255,255,255).

Shorthand CSS properties (e.g. margin, background, border) are not supported. For example, if you want to retrieve the rendered margin, use:
$(elem).css('marginTop') and $(elem).css('marginRight'), and so on.

Example 1: To access the background color of a clicked div.

Added in version 1.0

Javascript

$("div").click(function () {
 var color = $(this).css("background-color");
 $("#result").html("That div is <span style='color:" +
 color + ";'>" + color + ".");
});

CSS

div { width:60px; height:60px; margin:5px; float:left; }

HTML

<div style="background-color:blue;"></div>
<div style="background-color:rgb(15,99,30);"></div>

<div style="background-color:#123456;"></div>
<div style="background-color:#f11;"></div>

css

Set one or more CSS properties for the set of matched elements.

css(map):jQuery

map:Map A map of property-value pairs to set.

As with the .prop() method, the .css() method makes setting properties of elements quick and easy. This method can take either a property
name and value as separate parameters, or a single map of key-value pairs (JavaScript object notation).

Also, jQuery can equally interpret the CSS and DOM formatting of multiple-word properties. For example, jQuery understands and returns the
correct value for both .css({'background-color': '#ffe', 'border-left': '5px solid #ccc'}) and .css({backgroundColor: '#ffe',
borderLeft: '5px solid #ccc'}). Notice that with the DOM notation, quotation marks around the property names are optional, but with CSS
notation they're required due to the hyphen in the name.

When using .css() as a setter, jQuery modifies the element's style property. For example, $('#mydiv').css('color', 'green') is equivalent
to document.getElementById('mydiv').style.color = 'green'. Setting the value of a style property to an empty string â€” e.g.
$('#mydiv').css('color', '') â€” removes that property from an element if it has already been directly applied, whether in the HTML style
attribute, through jQuery's .css() method, or through direct DOM manipulation of the style property. It does not, however, remove a style that
has been applied with a CSS rule in a stylesheet or <style> element.

As of jQuery 1.6, .css() accepts relative values similar to .animate(). Relative values are a string starting with += or -= to increment or
decrement the current value. For example, if an element's padding-left was 10px, .css("padding-left", "+=15") would result in a total
padding-left of 25px.

As of jQuery 1.4, .css() allows us to pass a function as the property value:

$('div.example').css('width', function(index) {
 return index * 50;
});

This example sets the widths of the matched elements to incrementally larger values.

Note: If nothing is returned in the setter function (ie. function(index, style){}), or if undefined is returned, the current value is not changed.
This is useful for selectively setting values only when certain criteria are met.

Example 1: To change the color of any paragraph to red on mouseover event.

Javascript

 $("p").mouseover(function () {
 $(this).css("color","red");
 });

CSS

 p { color:blue; width:200px; font-size:14px; }

HTML

 <p>Just roll the mouse over me.</p>

 <p>Or me to see a color change.</p>

Example 2: Increase the width of #box by 200 pixels

Javascript

 $("#box").one("click", function () {
 $(this).css("width","+=200");
 });

CSS

 #box { background: black; color: snow; width:100px; padding:10px; }

HTML

 <div id="box">Click me to grow</div>

Example 3: To highlight a clicked word in the paragraph.

Javascript

 var words = $("p:first").text().split(" ");
 var text = words.join(" ");
 $("p:first").html("" + text + "");
 $("span").click(function () {
 $(this).css("background-color","yellow");
 });

CSS

 p { color:blue; font-weight:bold; cursor:pointer; }

HTML

<p>
 Once upon a time there was a man
 who lived in a pizza parlor. This
 man just loved pizza and ate it all
 the time. He went on to be the
 happiest man in the world. The end.
</p>

Example 4: To set the color of all paragraphs to red and background to blue:

Javascript

 $("p").hover(function () {
 $(this).css({'background-color' : 'yellow', 'font-weight' : 'bolder'});
 }, function () {
 var cssObj = {
 'background-color' : '#ddd',
 'font-weight' : '',
 'color' : 'rgb(0,40,244)'
 }
 $(this).css(cssObj);
 });

CSS

 p { color:green; }

HTML

 <p>Move the mouse over a paragraph.</p>
 <p>Like this one or the one above.</p>

Example 5: Increase the size of a div when you click it:

Javascript

 $("div").click(function() {
 $(this).css({
 width: function(index, value) {
 return parseFloat(value) * 1.2;
 },
 height: function(index, value) {
 return parseFloat(value) * 1.2;
 }

 });
 });

CSS

 div { width: 20px; height: 15px; background-color: #f33; }

HTML

 <div>click</div>
 <div>click</div>

toggleClass: see Attributes

removeClass: see Attributes

hasClass: see Attributes

addClass: see Attributes

Added in version 1.4

Manipulation

removeProp: see Attributes

prop: see Attributes

prop: see Attributes

outerWidth: see CSS

outerHeight: see CSS

innerWidth: see CSS

innerHeight: see CSS

width: see CSS

width: see CSS

height: see CSS

height: see CSS

scrollLeft: see CSS

scrollLeft: see CSS

scrollTop: see CSS

scrollTop: see CSS

position: see CSS

offset: see CSS

offset: see CSS

css: see CSS

css: see CSS

unwrap

Remove the parents of the set of matched elements from the DOM, leaving the matched elements in their place.

unwrap():jQuery

The .unwrap() method removes the element's parent. This is effectively the inverse of the .wrap() method. The matched elements (and their
siblings, if any) replace their parents within the DOM structure.

Example 1: Wrap/unwrap a div around each of the paragraphs.

Javascript

$("button").toggle(function(){
 $("p").wrap("<div></div>");
}, function(){
 $("p").unwrap();
});

CSS

 div { border: 2px solid blue; }
 p { background:yellow; margin:4px; }

Added in version 1.4

Added in version 1.5

HTML

<button>wrap/unwrap</button>
<p>Hello</p>
<p>cruel</p>
<p>World</p>

detach

Remove the set of matched elements from the DOM.

detach(selector):jQuery

selector:Selector (optional) A selector expression that filters the set of matched elements to be removed.

The .detach() method is the same as .remove(), except that .detach() keeps all jQuery data associated with the removed elements. This
method is useful when removed elements are to be reinserted into the DOM at a later time.

Example 1: Detach all paragraphs from the DOM

Javascript

 $("p").click(function(){
 $(this).toggleClass("off");
 });
 var p;
 $("button").click(function(){
 if (p) {
 p.appendTo("body");
 p = null;
 } else {
 p = $("p").detach();
 }
 });

CSS

p { background:yellow; margin:6px 0; } p.off { background: black; }

HTML

<p>Hello</p>
 how are
 <p>you?</p>
 <button>Attach/detach paragraphs</button>

clone

Create a deep copy of the set of matched elements.

clone(withDataAndEvents, deepWithDataAndEvents):jQuery

withDataAndEvents:Boolean (optional) A Boolean indicating whether event handlers and data should be copied along with
the elements. The default value is false. *In jQuery 1.5.0 the default value was incorrectly
true; it was changed back to false in 1.5.1 and up.

deepWithDataAndEvents:Boolean (optional) A Boolean indicating whether event handlers and data for all children of the cloned
element should be copied. By default its value matches the first argument's value (which
defaults to false).

The .clone() method performs a deep copy of the set of matched elements, meaning that it copies the matched elements as well as all of their
descendant elements and text nodes. When used in conjunction with one of the insertion methods, .clone() is a convenient way to duplicate
elements on a page. Consider the following HTML:

<div class="container">
 <div class="hello">Hello</div>
 <div class="goodbye">Goodbye</div>
</div>

As shown in the discussion for .append(), normally when an element is inserted somewhere in the DOM, it is moved from its old location. So,
given the code:

$('.hello').appendTo('.goodbye');

The resulting DOM structure would be:

<div class="container">
 <div class="goodbye">
 Goodbye
 <div class="hello">Hello</div>
 </div>
</div>

To prevent this and instead create a copy of the element, you could write the following:

$('.hello').clone().appendTo('.goodbye');

This would produce:

<div class="container">
 <div class="hello">Hello</div>
 <div class="goodbye">
 Goodbye
 <div class="hello">Hello</div>
 </div>
</div>

Note that when using the .clone() method, you can modify the cloned elements or their contents before (re-)inserting them into the
document.

Normally, any event handlers bound to the original element are not copied to the clone. The optional withDataAndEvents parameter allows us to
change this behavior, and to instead make copies of all of the event handlers as well, bound to the new copy of the element. As of jQuery 1.4,
all element data (attached by the .data() method) is also copied to the new copy.

However, objects and arrays within element data are not copied and will continue to be shared between the cloned element and the original
element. To deep copy all data, copy each one manually:

var $elem = $('#elem').data("arr": [1]), // Original element with attached data
 $clone = $elem.clone(true)
 .data("arr", $.extend([], $elem.data("arr"))); // Deep copy to prevent data sharing

As of jQuery 1.5, withDataAndEvents can be optionally enhanced with deepWithDataAndEvents to copy the events and data for all children of
the cloned element.

Example 1: Clones all b elements (and selects the clones) and prepends them to all paragraphs.

Javascript

 $("b").clone().prependTo("p");

HTML

 Hello<p>, how are you?</p>

Example 2: When using .clone() to clone a collection of elements that are not attached to the DOM, their order when inserted into the DOM is
not guaranteed. However, it may be possible to preserve sort order with a workaround, as demonstrated:

CSS

 #orig, #copy, #copy-correct {
 float: left;
 width: 20%;
 }

Added in version 1.0

Javascript

// sort order is not guaranteed here and may vary with browser
$('#copy').append($('#orig .elem')
 .clone()
 .children('a')
 .prepend('foo - ')
 .parent()
 .clone());

// correct way to approach where order is maintained
$('#copy-correct')
 .append($('#orig .elem')
 .clone()
 .children('a')
 .prepend('bar - ')
 .end());

HTML

<div id="orig">
 <div class="elem"><a>1</div>
 <div class="elem"><a>2</div>
 <div class="elem"><a>3</div>
 <div class="elem"><a>4</div>
 <div class="elem"><a>5</div>
</div>
<div id="copy"></div>
<div id="copy-correct"></div>

remove

Remove the set of matched elements from the DOM.

remove(selector):jQuery

selector:String (optional) A selector expression that filters the set of matched elements to be removed.

Similar to .empty(), the .remove() method takes elements out of the DOM. Use .remove() when you want to remove the element itself, as well
as everything inside it. In addition to the elements themselves, all bound events and jQuery data associated with the elements are removed. To
remove the elements without removing data and events, use .detach() instead.

Consider the following HTML:

<div class="container">
 <div class="hello">Hello</div>
 <div class="goodbye">Goodbye</div>
</div>

We can target any element for removal:

$('.hello').remove();

This will result in a DOM structure with the <div> element deleted:

<div class="container">
 <div class="goodbye">Goodbye</div>
</div>

If we had any number of nested elements inside <div class="hello">, they would be removed, too. Other jQuery constructs such as data or
event handlers are erased as well.

We can also include a selector as an optional parameter. For example, we could rewrite the previous DOM removal code as follows:

$('div').remove('.hello');

This would result in the same DOM structure:

<div class="container">
 <div class="goodbye">Goodbye</div>
</div>

Example 1: Removes all paragraphs from the DOM

Added in version 1.0

Javascript

 $("button").click(function () {
 $("p").remove();
 });

CSS

p { background:yellow; margin:6px 0; }

HTML

<p>Hello</p>
 how are
 <p>you?</p>
 <button>Call remove() on paragraphs</button>

Example 2: Removes all paragraphs that contain "Hello" from the DOM. Analogous to doing $("p").filter(":contains('Hello')").remove().

Javascript

 $("button").click(function () {
 $("p").remove(":contains('Hello')");
 });

CSS

p { background:yellow; margin:6px 0; }

HTML

<p class="hello">Hello</p>
 how are
 <p>you?</p>

 <button>Call remove(":contains('Hello')") on paragraphs</button>

empty

Remove all child nodes of the set of matched elements from the DOM.

empty():jQuery

This method removes not only child (and other descendant) elements, but also any text within the set of matched elements. This is because,
according to the DOM specification, any string of text within an element is considered a child node of that element. Consider the following
HTML:

<div class="container">
 <div class="hello">Hello</div>
 <div class="goodbye">Goodbye</div>
</div>

We can target any element for removal:

$('.hello').empty();

This will result in a DOM structure with the Hello text deleted:

<div class="container">
 <div class="hello"></div>
 <div class="goodbye">Goodbye</div>
</div>

If we had any number of nested elements inside <div class="hello">, they would be removed, too.

To avoid memory leaks, jQuery removes other constructs such as data and event handlers from the child elements before removing the elements
themselves.

Added in version 1.2

Example 1: Removes all child nodes (including text nodes) from all paragraphs

Javascript

 $("button").click(function () {
 $("p").empty();
 });

CSS

 p { background:yellow; }

HTML

<p>
 Hello, Person and person
</p>

<button>Call empty() on above paragraph</button>

replaceAll

Replace each target element with the set of matched elements.

replaceAll(target):jQuery

target:Selector A selector expression indicating which element(s) to replace.

The .replaceAll() method is corollary to .replaceWith(), but with the source and target reversed. Consider this DOM structure:

<div class="container">
 <div class="inner first">Hello</div>
 <div class="inner second">And</div>
 <div class="inner third">Goodbye</div>
</div>

We can create an element, then replace other elements with it:

$('<h2>New heading</h2>').replaceAll('.inner');

This causes all of them to be replaced:

<div class="container">
 <h2>New heading</h2>
 <h2>New heading</h2>
 <h2>New heading</h2>
</div>

Or, we could select an element to use as the replacement:

$('.first').replaceAll('.third');

This results in the DOM structure:

<div class="container">
 <div class="inner second">And</div>
 <div class="inner first">Hello</div>
</div>

From this example, we can see that the selected element replaces the target by being moved from its old location, not by being cloned.

Example 1: Replace all the paragraphs with bold words.

Javascript

$("Paragraph. ").replaceAll("p"); // check replaceWith() examples

HTML

<p>Hello</p>
 <p>cruel</p>
 <p>World</p>

Added in version 1.4

replaceWith

Replace each element in the set of matched elements with the provided new content.

replaceWith(function):jQuery

function:Function A function that returns content with which to replace the set of matched elements.

The .replaceWith() method removes content from the DOM and inserts new content in its place with a single call. Consider this DOM
structure:

<div class="container">
 <div class="inner first">Hello</div>
 <div class="inner second">And</div>
 <div class="inner third">Goodbye</div>
</div>

The second inner <div> could be replaced with the specified HTML:

$('div.second').replaceWith('<h2>New heading</h2>');

This results in the structure:

<div class="container">
 <div class="inner first">Hello</div>
 <h2>New heading</h2>
 <div class="inner third">Goodbye</div>
</div>

All inner <div> elements could be targeted at once:

$('div.inner').replaceWith('<h2>New heading</h2>');

This causes all of them to be replaced:

<div class="container">
 <h2>New heading</h2>
 <h2>New heading</h2>
 <h2>New heading</h2>
</div>

An element could also be selected as the replacement:

$('div.third').replaceWith($('.first'));

This results in the DOM structure:

<div class="container">
 <div class="inner second">And</div>
 <div class="inner first">Hello</div>
</div>

This example demonstrates that the selected element replaces the target by being moved from its old location, not by being cloned.

The .replaceWith() method, like most jQuery methods, returns the jQuery object so that other methods can be chained onto it. However, it
must be noted that the original jQuery object is returned. This object refers to the element that has been removed from the DOM, not the new
element that has replaced it.

As of jQuery 1.4, .replaceWith() can also work on disconnected DOM nodes. For example, with the following code, .replaceWith() returns a
jQuery set containing only a paragraph.:

$("<div/>").replaceWith("<p></p>");

The .replaceWith() method can also take a function as its argument:

$('div.container').replaceWith(function() {
 return $(this).contents();
});

This results in <div class="container"> being replaced by its three child <div>s. The return value of the function may be an HTML string,
DOM element, or jQuery object.

Example 1: On click, replace the button with a div containing the same word.

Javascript

$("button").click(function () {
 $(this).replaceWith("<div>" + $(this).text() + "</div>");
});

CSS

 button { display:block; margin:3px; color:red; width:200px; }
 div { color:red; border:2px solid blue; width:200px;
 margin:3px; text-align:center; }

HTML

<button>First</button>
<button>Second</button>
<button>Third</button>

Example 2: Replace all paragraphs with bold words.

Javascript

$("p").replaceWith("Paragraph. ");

HTML

<p>Hello</p>
<p>cruel</p>
<p>World</p>

Example 3: On click, replace each paragraph with a div that is already in the DOM and selected with the $() function. Notice it doesn't clone the
object but rather moves it to replace the paragraph.

Javascript

$("p").click(function () {
 $(this).replaceWith($("div"));
});

CSS

 div { border:2px solid blue; color:red; margin:3px; }
 p { border:2px solid red; color:blue; margin:3px; cursor:pointer; }

HTML

 <p>Hello</p>
 <p>cruel</p>
 <p>World</p>

 <div>Replaced!</div>

Example 4: On button click, replace the containing div with its child divs and append the class name of the selected element to the paragraph.

Javascript

$('button').bind("click", function() {
 var $container = $("div.container").replaceWith(function() {
 return $(this).contents();
 });

 $("p").append($container.attr("class"));
});

Added in version 1.4

CSS

 .container { background-color: #991; }
 .inner { color: #911; }

HTML

<p>
 <button>Replace!</button>
</p>
<div class="container">
 <div class="inner">Scooby</div>
 <div class="inner">Dooby</div>
 <div class="inner">Doo</div>
</div>

wrapInner

Wrap an HTML structure around the content of each element in the set of matched elements.

wrapInner(function(index)):jQuery

function(index):Function A callback function which generates a structure to wrap around the content of the matched
elements. Receives the index position of the element in the set as an argument. Within the
function, this refers to the current element in the set.

The .wrapInner() function can take any string or object that could be passed to the $() factory function to specify a DOM structure. This
structure may be nested several levels deep, but should contain only one inmost element. The structure will be wrapped around the content of
each of the elements in the set of matched elements.

Consider the following HTML:

<div class="container">
 <div class="inner">Hello</div>
 <div class="inner">Goodbye</div>
</div>

Using .wrapInner(), we can insert an HTML structure around the content of each inner <div> elements like so:

$('.inner').wrapInner('<div class="new" />');

The new <div> element is created on the fly and added to the DOM. The result is a new <div> wrapped around the content of each matched
element:

<div class="container">
 <div class="inner">
 <div class="new">Hello</div>
 </div>
 <div class="inner">
 <div class="new">Goodbye</div>
 </div>
</div>

The second version of this method allows us to instead specify a callback function. This callback function will be called once for every matched
element; it should return a DOM element, jQuery object, or HTML snippet in which to wrap the content of the corresponding element. For
example:

$('.inner').wrapInner(function() {
 return '<div class="' + this.nodeValue + '" />';
});

This will cause each <div> to have a class corresponding to the text it wraps:

<div class="container">
 <div class="inner">
 <div class="Hello">Hello</div>
 </div>
 <div class="inner">
 <div class="Goodbye">Goodbye</div>
 </div>
</div>

Note: When passing a selector string to the .wrapInner() function, the expected input is well formed HTML with correctly closed tags.
Examples of valid input include:

$(elem).wrapInner("<div class='test' />");
$(elem).wrapInner("<div class='test'></div>");
$(elem).wrapInner("<div class=\"test\"></div>");

Example 1: Selects all paragraphs and wraps a bold tag around each of its contents.

Javascript

$("p").wrapInner("");

CSS

p { background:#bbf; }

HTML

<p>Hello</p>

 <p>cruel</p>
 <p>World</p>

Example 2: Wraps a newly created tree of objects around the inside of the body.

Javascript

$("body").wrapInner("<div><div><p></p></div></div>");

CSS

 div { border:2px green solid; margin:2px; padding:2px; }
 p { background:yellow; margin:2px; padding:2px; }

HTML

Plain old text, or is it?

Example 3: Selects all paragraphs and wraps a bold tag around each of its contents.

Javascript

$("p").wrapInner(document.createElement("b"));

CSS

p { background:#9f9; }

HTML

<p>Hello</p>

 <p>cruel</p>
 <p>World</p>

Example 4: Selects all paragraphs and wraps a jQuery object around each of its contents.

Javascript

$("p").wrapInner($(""));

Added in version 1.2

CSS

 p { background:#9f9; }
 .red { color:red; }

HTML

<p>Hello</p>
 <p>cruel</p>
 <p>World</p>

wrapAll

Wrap an HTML structure around all elements in the set of matched elements.

wrapAll(wrappingElement):jQuery

wrappingElement:String, Selector,
Element, jQuery

An HTML snippet, selector expression, jQuery object, or DOM element specifying the
structure to wrap around the matched elements.

The .wrapAll() function can take any string or object that could be passed to the $() function to specify a DOM structure. This structure may
be nested several levels deep, but should contain only one inmost element. The structure will be wrapped around all of the elements in the set of
matched elements, as a single group.

Consider the following HTML:

<div class="container">
 <div class="inner">Hello</div>
 <div class="inner">Goodbye</div>
</div>

Using .wrapAll(), we can insert an HTML structure around the inner <div> elements like so:

$('.inner').wrapAll('<div class="new" />');

The new <div> element is created on the fly and added to the DOM. The result is a new <div> wrapped around all matched elements:

<div class="container">
 <div class="new">
 <div class="inner">Hello</div>
 <div class="inner">Goodbye</div>
 </div>
</div>

Example 1: Wrap a new div around all of the paragraphs.

Javascript

$("p").wrapAll("<div></div>");

CSS

 div { border: 2px solid blue; }
 p { background:yellow; margin:4px; }

HTML

<p>Hello</p>
 <p>cruel</p>
 <p>World</p>

Example 2: Wraps a newly created tree of objects around the spans. Notice anything in between the spans gets left out like the (red text)
in this example. Even the white space between spans is left out. Click View Source to see the original html.

Javascript

$("span").wrapAll("<div><div><p></p></div></div>");

Added in version 1.4

CSS

 div { border:2px blue solid; margin:2px; padding:2px; }
 p { background:yellow; margin:2px; padding:2px; }
 strong { color:red; }

HTML

Span Text
 What about me?
 Another One

Example 3: Wrap a new div around all of the paragraphs.

Javascript

$("p").wrapAll(document.createElement("div"));

CSS

 div { border: 2px solid blue; }
 p { background:yellow; margin:4px; }

HTML

<p>Hello</p>
 <p>cruel</p>
 <p>World</p>

Example 4: Wrap a jQuery object double depth div around all of the paragraphs. Notice it doesn't move the object but just clones it to wrap
around its target.

Javascript

$("p").wrapAll($(".doublediv"));

CSS

 div { border: 2px solid blue; margin:2px; padding:2px; }
 .doublediv { border-color:red; }
 p { background:yellow; margin:4px; font-size:14px; }

HTML

<p>Hello</p>
 <p>cruel</p>
 <p>World</p>
 <div class="doublediv"><div></div></div>

wrap

Wrap an HTML structure around each element in the set of matched elements.

wrap(function(index)):jQuery

function(index):Function A callback function returning the HTML content or jQuery object to wrap around the matched
elements. Receives the index position of the element in the set as an argument. Within the
function, this refers to the current element in the set.

The .wrap() function can take any string or object that could be passed to the $() factory function to specify a DOM structure. This structure
may be nested several levels deep, but should contain only one inmost element. A copy of this structure will be wrapped around each of the
elements in the set of matched elements. This method returns the original set of elements for chaining purposes.

Consider the following HTML:

<div class="container">
 <div class="inner">Hello</div>
 <div class="inner">Goodbye</div>
</div>

Using .wrap(), we can insert an HTML structure around the inner <div> elements like so:

$('.inner').wrap('<div class="new" />');

The new <div> element is created on the fly and added to the DOM. The result is a new <div> wrapped around each matched element:

<div class="container">
 <div class="new">
 <div class="inner">Hello</div>
 </div>
 <div class="new">
 <div class="inner">Goodbye</div>
 </div>
</div>

The second version of this method allows us to instead specify a callback function. This callback function will be called once for every matched
element; it should return a DOM element, jQuery object, or HTML snippet in which to wrap the corresponding element. For example:

$('.inner').wrap(function() {
 return '<div class="' + $(this).text() + '" />';
});

This will cause each <div> to have a class corresponding to the text it wraps:

<div class="container">
 <div class="Hello">
 <div class="inner">Hello</div>
 </div>
 <div class="Goodbye">
 <div class="inner">Goodbye</div>
 </div>
</div>

Example 1: Wrap a new div around all of the paragraphs.

Javascript

$("p").wrap("<div></div>");

CSS

 div { border: 2px solid blue; }
 p { background:yellow; margin:4px; }

HTML

<p>Hello</p>
 <p>cruel</p>
 <p>World</p>

Example 2: Wraps a newly created tree of objects around the spans. Notice anything in between the spans gets left out like the (red text)
in this example. Even the white space between spans is left out. Click View Source to see the original html.

Javascript

$("span").wrap("<div><div><p></p></div></div>");

CSS

 div { border:2px blue solid; margin:2px; padding:2px; }
 p { background:yellow; margin:2px; padding:2px; }
 strong { color:red; }

Added in version 1.0

HTML

Span Text
 What about me?
 Another One

Example 3: Wrap a new div around all of the paragraphs.

Javascript

$("p").wrap(document.createElement("div"));

CSS

 div { border: 2px solid blue; }
 p { background:yellow; margin:4px; }

HTML

<p>Hello</p>
 <p>cruel</p>
 <p>World</p>

Example 4: Wrap a jQuery object double depth div around all of the paragraphs. Notice it doesn't move the object but just clones it to wrap
around its target.

Javascript

$("p").wrap($(".doublediv"));

CSS

 div { border: 2px solid blue; margin:2px; padding:2px; }
 .doublediv { border-color:red; }
 p { background:yellow; margin:4px; font-size:14px; }

HTML

<p>Hello</p>
 <p>cruel</p>
 <p>World</p>
 <div class="doublediv"><div></div></div>

insertBefore

Insert every element in the set of matched elements before the target.

insertBefore(target):jQuery

target:Selector, Element, jQuery A selector, element, HTML string, or jQuery object; the matched set of elements will be
inserted before the element(s) specified by this parameter.

The .before() and .insertBefore() methods perform the same task. The major difference is in the syntax-specifically, in the placement of the
content and target. With .before(), the selector expression preceding the method is the container before which the content is inserted. With
.insertBefore(), on the other hand, the content precedes the method, either as a selector expression or as markup created on the fly, and it is
inserted before the target container.

Consider the following HTML:

<div class="container">
 <h2>Greetings</h2>
 <div class="inner">Hello</div>
 <div class="inner">Goodbye</div>
</div>

We can create content and insert it before several elements at once:

Added in version 1.4

$('<p>Test</p>').insertBefore('.inner');

Each inner <div> element gets this new content:

<div class="container">
 <h2>Greetings</h2>
 <p>Test</p>
 <div class="inner">Hello</div>
 <p>Test</p>
 <div class="inner">Goodbye</div>
</div>

We can also select an element on the page and insert it before another:

$('h2').insertBefore($('.container'));

If an element selected this way is inserted elsewhere, it will be moved before the target (not cloned):

<h2>Greetings</h2>
<div class="container">
 <div class="inner">Hello</div>
 <div class="inner">Goodbye</div>
</div>

If there is more than one target element, however, cloned copies of the inserted element will be created for each target after the first.

Example 1: Inserts all paragraphs before an element with id of "foo". Same as $("#foo").before("p")

Javascript

$("p").insertBefore("#foo"); // check before() examples

CSS

#foo { background:yellow; }

HTML

<div id="foo">FOO!</div><p>I would like to say: </p>

before

Insert content, specified by the parameter, before each element in the set of matched elements.

before(function):jQuery

function:Function A function that returns an HTML string, DOM element(s), or jQuery object to insert before
each element in the set of matched elements. Receives the index position of the element in the
set as an argument. Within the function, this refers to the current element in the set.

The .before() and .insertBefore() methods perform the same task. The major difference is in the syntax-specifically, in the placement of the
content and target. With .before(), the selector expression preceding the method is the container before which the content is inserted. With
.insertBefore(), on the other hand, the content precedes the method, either as a selector expression or as markup created on the fly, and it is
inserted before the target container.

Consider the following HTML:

<div class="container">
 <h2>Greetings</h2>
 <div class="inner">Hello</div>
 <div class="inner">Goodbye</div>
</div>

You can create content and insert it before several elements at once:

$('.inner').before('<p>Test</p>');

Each inner <div> element gets this new content:

<div class="container">
 <h2>Greetings</h2>
 <p>Test</p>
 <div class="inner">Hello</div>
 <p>Test</p>

 <div class="inner">Goodbye</div>
</div>

You can also select an element on the page and insert it before another:

$('.container').before($('h2'));

If an element selected this way is inserted elsewhere, it will be moved before the target (not cloned):

<h2>Greetings</h2>
<div class="container">
 <div class="inner">Hello</div>
 <div class="inner">Goodbye</div>
</div>

If there is more than one target element, however, cloned copies of the inserted element will be created for each target after the first.

In jQuery 1.4, .before() and .after() will also work on disconnected DOM nodes:

$("<div/>").before("<p></p>");

The result is a jQuery set that contains a paragraph and a div (in that order).

Additional Arguments

Similar to other content-adding methods such as .prepend() and .after(), .before() also supports passing in multiple arguments as input.
Supported input includes DOM elements, jQuery objects, HTML strings, and arrays of DOM elements.

For example, the following will insert two new <div>s and an existing <div> before the first paragraph:

var $newdiv1 = $('<div id="object1"/>'),
 newdiv2 = document.createElement('div'),
 existingdiv1 = document.getElementById('foo');

$('p').first().before($newdiv1, [newdiv2, existingdiv1]);

Since .before() can accept any number of additional arguments, the same result can be achieved by passing in the three <div>s as three
separate arguments, like so: $('p').first().before($newdiv1, newdiv2, existingdiv1). The type and number of arguments will largely
depend on how you collect the elements in your code.

Example 1: Inserts some HTML before all paragraphs.

Javascript

$("p").before("Hello");

CSS

p { background:yellow; }

HTML

<p> is what I said...</p>

Example 2: Inserts a DOM element before all paragraphs.

Javascript

$("p").before(document.createTextNode("Hello"));

CSS

p { background:yellow; }

HTML

<p> is what I said...</p>

Example 3: Inserts a jQuery object (similar to an Array of DOM Elements) before all paragraphs.

Added in version 1.0

Javascript

$("p").before($("b"));

CSS

p { background:yellow; }

HTML

<p> is what I said...</p>Hello

insertAfter

Insert every element in the set of matched elements after the target.

insertAfter(target):jQuery

target:Selector, Element, jQuery A selector, element, HTML string, or jQuery object; the matched set of elements will be
inserted after the element(s) specified by this parameter.

The .after() and .insertAfter() methods perform the same task. The major difference is in the syntax-specifically, in the placement of the
content and target. With .after(), the selector expression preceding the method is the container after which the content is inserted. With
.insertAfter(), on the other hand, the content precedes the method, either as a selector expression or as markup created on the fly, and it is
inserted after the target container.

Consider the following HTML:

<div class="container">
 <h2>Greetings</h2>
 <div class="inner">Hello</div>
 <div class="inner">Goodbye</div>
</div>

We can create content and insert it after several elements at once:

$('<p>Test</p>').insertAfter('.inner');

Each inner <div> element gets this new content:

<div class="container">
 <h2>Greetings</h2>
 <div class="inner">Hello</div>
 <p>Test</p>
 <div class="inner">Goodbye</div>
 <p>Test</p>
</div>

We can also select an element on the page and insert it after another:

$('h2').insertAfter($('.container'));

If an element selected this way is inserted elsewhere, it will be moved after the target (not cloned):

<div class="container">
 <div class="inner">Hello</div>
 <div class="inner">Goodbye</div>
</div>
<h2>Greetings</h2>

If there is more than one target element, however, cloned copies of the inserted element will be created for each target after the first.

Example 1: Inserts all paragraphs after an element with id of "foo". Same as $("#foo").after("p")

Javascript

$("p").insertAfter("#foo"); // check after() examples

CSS

#foo { background:yellow; }

Added in version 1.4

HTML

<p> is what I said... </p><div id="foo">FOO!</div>

after

Insert content, specified by the parameter, after each element in the set of matched elements.

after(function(index)):jQuery

function(index):Function A function that returns an HTML string, DOM element(s), or jQuery object to insert after each
element in the set of matched elements. Receives the index position of the element in the set as
an argument. Within the function, this refers to the current element in the set.

The .after() and .insertAfter() methods perform the same task. The major difference is in the syntaxâ€”specifically, in the placement of the
content and target. With .after(), the selector expression preceding the method is the container after which the content is inserted. With
.insertAfter(), on the other hand, the content precedes the method, either as a selector expression or as markup created on the fly, and it is
inserted after the target container.

Using the following HTML:

<div class="container">
 <h2>Greetings</h2>
 <div class="inner">Hello</div>
 <div class="inner">Goodbye</div>
</div>

Content can be created and then inserted after several elements at once:

$('.inner').after('<p>Test</p>');

Each inner <div> element gets this new content:

<div class="container">
 <h2>Greetings</h2>
 <div class="inner">Hello</div>
 <p>Test</p>
 <div class="inner">Goodbye</div>
 <p>Test</p>
</div>

An element in the DOM can also be selected and inserted after another element:

$('.container').after($('h2'));

If an element selected this way is inserted elsewhere, it will be moved rather than cloned:

<div class="container">
 <div class="inner">Hello</div>
 <div class="inner">Goodbye</div>
</div>
<h2>Greetings</h2>

If there is more than one target element, however, cloned copies of the inserted element will be created for each target after the first.

Inserting Disconnected DOM nodes

As of jQuery 1.4, .before() and .after() will also work on disconnected DOM nodes. For example, given the following code:

$('<div/>').after('<p></p>');

The result is a jQuery set containing a div and a paragraph, in that order. That set can be further manipulated, even before it is inserted in the
document.

$('<div/>').after('<p></p>').addClass('foo')
 .filter('p').attr('id', 'bar').html('hello')
.end()
.appendTo('body');

This results in the following elements inserted just before the closing </body> tag:

<div class="foo"></div>
<p class="foo" id="bar">hello</p>

Passing a Function

As of jQuery 1.4, .after() supports passing a function that returns the elements to insert.

$('p').after(function() {
 return '<div>' + this.className + '</div>';
});

This example inserts a <div> after each paragraph, with each new <div> containing the class name(s) of its preceding paragraph.

Additional Arguments

Similar to other content-adding methods such as .prepend() and .before(), .after() also supports passing in multiple arguments as input.
Supported input includes DOM elements, jQuery objects, HTML strings, and arrays of DOM elements.

For example, the following will insert two new <div>s and an existing <div> after the first paragraph:

var $newdiv1 = $('<div id="object1"/>'),
 newdiv2 = document.createElement('div'),
 existingdiv1 = document.getElementById('foo');

$('p').first().after($newdiv1, [newdiv2, existingdiv1]);

Since .after() can accept any number of additional arguments, the same result can be achieved by passing in the three <div>s as three separate
arguments, like so: $('p').first().after($newdiv1, newdiv2, existingdiv1). The type and number of arguments will largely depend on the
elements are collected in the code.

Example 1: Inserts some HTML after all paragraphs.

Javascript

$("p").after("Hello");

CSS

p { background:yellow; }

HTML

<p>I would like to say: </p>

Example 2: Inserts a DOM element after all paragraphs.

Javascript

$("p").after(document.createTextNode("Hello"));

CSS

p { background:yellow; }

HTML

<p>I would like to say: </p>

Example 3: Inserts a jQuery object (similar to an Array of DOM Elements) after all paragraphs.

Javascript

$("p").after($("b"));

CSS

p { background:yellow; }

HTML

Hello<p>I would like to say: </p>

Added in version 1.0

prependTo

Insert every element in the set of matched elements to the beginning of the target.

prependTo(target):jQuery

target:Selector, Element, jQuery A selector, element, HTML string, or jQuery object; the matched set of elements will be
inserted at the beginning of the element(s) specified by this parameter.

The .prepend() and .prependTo() methods perform the same task. The major difference is in the syntax-specifically, in the placement of the
content and target. With .prepend(), the selector expression preceding the method is the container into which the content is inserted. With
.prependTo(), on the other hand, the content precedes the method, either as a selector expression or as markup created on the fly, and it is
inserted into the target container.

Consider the following HTML:

<h2>Greetings</h2>
<div class="container">
 <div class="inner">Hello</div>
 <div class="inner">Goodbye</div>
</div>

We can create content and insert it into several elements at once:

$('<p>Test</p>').prependTo('.inner');

Each inner <div> element gets this new content:

<h2>Greetings</h2>
<div class="container">
 <div class="inner">
 <p>Test</p>
 Hello
 </div>
 <div class="inner">
 <p>Test</p>
 Goodbye
 </div>
</div>

We can also select an element on the page and insert it into another:

$('h2').prependTo($('.container'));

If an element selected this way is inserted elsewhere, it will be moved into the target (not cloned):

<div class="container">
 <h2>Greetings</h2>
 <div class="inner">Hello</div>
 <div class="inner">Goodbye</div>
</div>

If there is more than one target element, however, cloned copies of the inserted element will be created for each target after the first.

Example 1: Prepends all spans to the element with the ID "foo"

CSS

div { background:yellow; }

Javascript

$("span").prependTo("#foo"); // check prepend() examples

HTML

<div id="foo">FOO!</div>

 I have something to say...

prepend

Insert content, specified by the parameter, to the beginning of each element in the set of matched elements.

Added in version 1.4prepend(function(index, html)):jQuery

function(index, html):Function A function that returns an HTML string, DOM element(s), or jQuery object to insert at the
beginning of each element in the set of matched elements. Receives the index position of the
element in the set and the old HTML value of the element as arguments. Within the function,
this refers to the current element in the set.

The .prepend() method inserts the specified content as the first child of each element in the jQuery collection (To insert it as the last child, use
.append()).

The .prepend() and .prependTo() methods perform the same task. The major difference is in the syntaxâ€”specifically, in the placement of the
content and target. With .prepend(), the selector expression preceding the method is the container into which the content is inserted. With
.prependTo(), on the other hand, the content precedes the method, either as a selector expression or as markup created on the fly, and it is
inserted into the target container.

Consider the following HTML:

<h2>Greetings</h2>
<div class="container">
 <div class="inner">Hello</div>
 <div class="inner">Goodbye</div>
</div>

You can create content and insert it into several elements at once:

$('.inner').prepend('<p>Test</p>');

Each <div class="inner"> element gets this new content:

<h2>Greetings</h2>
<div class="container">
 <div class="inner">
 <p>Test</p>
 Hello
 </div>
 <div class="inner">
 <p>Test</p>
 Goodbye
 </div>
</div>

You can also select an element on the page and insert it into another:

$('.container').prepend($('h2'));

If a single element selected this way is inserted elsewhere, it will be moved into the target (not cloned):

<div class="container">
 <h2>Greetings</h2>
 <div class="inner">Hello</div>
 <div class="inner">Goodbye</div>
</div>

Important: If there is more than one target element, however, cloned copies of the inserted element will be created for each target after the first.

Additional Arguments

Similar to other content-adding methods such as .append() and .before(), .prepend() also supports passing in multiple arguments as input.
Supported input includes DOM elements, jQuery objects, HTML strings, and arrays of DOM elements.

For example, the following will insert two new <div>s and an existing <div> as the first three child nodes of the body:

var $newdiv1 = $('<div id="object1"/>'),
 newdiv2 = document.createElement('div'),
 existingdiv1 = document.getElementById('foo');

$('body').prepend($newdiv1, [newdiv2, existingdiv1]);

Since .prepend() can accept any number of additional arguments, the same result can be achieved by passing in the three <div>s as three
separate arguments, like so: $('body').prepend($newdiv1, newdiv2, existingdiv1). The type and number of arguments will largely depend on
how you collect the elements in your code.

Example 1: Prepends some HTML to all paragraphs.

Added in version 1.0

Javascript

$("p").prepend("Hello ");

CSS

p { background:yellow; }

HTML

<p>there, friend!</p>

<p>amigo!</p>

Example 2: Prepends a DOM Element to all paragraphs.

Javascript

$("p").prepend(document.createTextNode("Hello "));

CSS

p { background:yellow; }

HTML

<p>is what I'd say</p>
<p>is what I said</p>

Example 3: Prepends a jQuery object (similar to an Array of DOM Elements) to all paragraphs.

Javascript

$("p").prepend($("b"));

CSS

p { background:yellow; }

HTML

<p> is what was said.</p>Hello

appendTo

Insert every element in the set of matched elements to the end of the target.

appendTo(target):jQuery

target:Selector, Element, jQuery A selector, element, HTML string, or jQuery object; the matched set of elements will be
inserted at the end of the element(s) specified by this parameter.

The .append() and .appendTo() methods perform the same task. The major difference is in the syntax-specifically, in the placement of the
content and target. With .append(), the selector expression preceding the method is the container into which the content is inserted. With
.appendTo(), on the other hand, the content precedes the method, either as a selector expression or as markup created on the fly, and it is
inserted into the target container.

Consider the following HTML:

<h2>Greetings</h2>
<div class="container">
 <div class="inner">Hello</div>
 <div class="inner">Goodbye</div>
</div>

We can create content and insert it into several elements at once:

$('<p>Test</p>').appendTo('.inner');

Added in version 1.4

Each inner <div> element gets this new content:

<h2>Greetings</h2>
<div class="container">
 <div class="inner">
 Hello
 <p>Test</p>
 </div>
 <div class="inner">
 Goodbye
 <p>Test</p>
 </div>
</div>

We can also select an element on the page and insert it into another:

$('h2').appendTo($('.container'));

If an element selected this way is inserted elsewhere, it will be moved into the target (not cloned):

<div class="container">
 <div class="inner">Hello</div>
 <div class="inner">Goodbye</div>
 <h2>Greetings</h2>
</div>

If there is more than one target element, however, cloned copies of the inserted element will be created for each target after the first.

Example 1: Appends all spans to the element with the ID "foo"

Javascript

$("span").appendTo("#foo"); // check append() examples

CSS

#foo { background:yellow; }

HTML

I have nothing more to say...

 <div id="foo">FOO! </div>

append

Insert content, specified by the parameter, to the end of each element in the set of matched elements.

append(function(index, html)):jQuery

function(index, html):Function A function that returns an HTML string, DOM element(s), or jQuery object to insert at the end
of each element in the set of matched elements. Receives the index position of the element in
the set and the old HTML value of the element as arguments. Within the function, this refers to
the current element in the set.

The .append() method inserts the specified content as the last child of each element in the jQuery collection (To insert it as the first child, use
.prepend()).

The .append() and .appendTo() methods perform the same task. The major difference is in the syntax-specifically, in the placement of the
content and target. With .append(), the selector expression preceding the method is the container into which the content is inserted. With
.appendTo(), on the other hand, the content precedes the method, either as a selector expression or as markup created on the fly, and it is
inserted into the target container.

Consider the following HTML:

<h2>Greetings</h2>
<div class="container">
 <div class="inner">Hello</div>
 <div class="inner">Goodbye</div>
</div>

You can create content and insert it into several elements at once:

$('.inner').append('<p>Test</p>');

Each inner <div> element gets this new content:

<h2>Greetings</h2>
<div class="container">
 <div class="inner">
 Hello
 <p>Test</p>
 </div>
 <div class="inner">
 Goodbye
 <p>Test</p>
 </div>
</div>

You can also select an element on the page and insert it into another:

$('.container').append($('h2'));

If an element selected this way is inserted elsewhere, it will be moved into the target (not cloned):

<div class="container">
 <div class="inner">Hello</div>
 <div class="inner">Goodbye</div>
 <h2>Greetings</h2>
</div>

If there is more than one target element, however, cloned copies of the inserted element will be created for each target after the first.

Additional Arguments

Similar to other content-adding methods such as .prepend() and .before(), .append() also supports passing in multiple arguments as input.
Supported input includes DOM elements, jQuery objects, HTML strings, and arrays of DOM elements.

For example, the following will insert two new <div>s and an existing <div> as the last three child nodes of the body:

var $newdiv1 = $('<div id="object1"/>'),
 newdiv2 = document.createElement('div'),
 existingdiv1 = document.getElementById('foo');

$('body').append($newdiv1, [newdiv2, existingdiv1]);

Since .append() can accept any number of additional arguments, the same result can be achieved by passing in the three <div>s as three
separate arguments, like so: $('body').append($newdiv1, newdiv2, existingdiv1). The type and number of arguments will largely depend on
how you collect the elements in your code.

Example 1: Appends some HTML to all paragraphs.

Javascript

 $("p").append("Hello");

CSS

 p { background:yellow; }

HTML

<p>I would like to say: </p>

Example 2: Appends an Element to all paragraphs.

Javascript

 $("p").append(document.createTextNode("Hello"));

CSS

 p { background:yellow; }

Added in version 1.0

HTML

<p>I would like to say: </p>

Example 3: Appends a jQuery object (similar to an Array of DOM Elements) to all paragraphs.

Javascript

 $("p").append($("strong"));

CSS

 p { background:yellow; }

HTML

Hello world!!!<p>I would like to say: </p>

val: see Attributes

val: see Attributes

text

Get the combined text contents of each element in the set of matched elements, including their descendants.

text():String

Unlike the .html() method, .text() can be used in both XML and HTML documents. The result of the .text() method is a string containing
the combined text of all matched elements. (Due to variations in the HTML parsers in different browsers, the text returned may vary in
newlines and other white space.) Consider the following HTML:

<div class="demo-container">
 <div class="demo-box">Demonstration Box</div>

 list item 1
 list item 2

 </div>

The code $('div.demo-container').text() would produce the following result:

Demonstration Box list item 1 list item 2

The .text() method cannot be used on form inputs or scripts. To set or get the text value of input or textarea elements, use the .val() method.
To get the value of a script element, use the .html() method.

As of jQuery 1.4, the .text() method returns the value of text and CDATA nodes as well as element nodes.

Example 1: Find the text in the first paragraph (stripping out the html), then set the html of the last paragraph to show it is just text (the red bold
is gone).

Javascript

 var str = $("p:first").text();
 $("p:last").html(str);

CSS

 p { color:blue; margin:8px; }
 b { color:red; }

HTML

<p>Test Paragraph.</p>

 <p></p>

Added in version 1.4

text

Set the content of each element in the set of matched elements to the specified text.

text(function(index, text)):jQuery

function(index, text):Function A function returning the text content to set. Receives the index position of the element in the set
and the old text value as arguments.

Unlike the .html() method, .text() can be used in both XML and HTML documents.

We need to be aware that this method escapes the string provided as necessary so that it will render correctly in HTML. To do so, it calls the
DOM method .createTextNode(), which replaces special characters with their HTML entity equivalents (such as < for <). Consider the
following HTML:

<div class="demo-container">
 <div class="demo-box">Demonstration Box</div>

 list item 1
 list item 2

</div>

The code $('div.demo-container').text('<p>This is a test.</p>'); will produce the following DOM output:

<div class="demo-container">
<p>This is a test.</p>
</div>

It will appear on a rendered page as though the tags were exposed, like this:

<p>This is a test</p>

The .text() method cannot be used on input elements. For input field text, use the .val() method.

As of jQuery 1.4, the .text() method allows us to set the text content by passing in a function.

$('ul li').text(function(index) {
 return 'item number ' + (index + 1);
});

Given an unordered list with three elements, this example will produce the following DOM output:

 item number 1
 item number 2
 item number 3

Example 1: Add text to the paragraph (notice the bold tag is escaped).

Javascript

$("p").text("Some new text.");

CSS

 p { color:blue; margin:8px; }

HTML

<p>Test Paragraph.</p>

html: see Attributes

html: see Attributes

toggleClass: see Attributes

removeClass: see Attributes

hasClass: see Attributes

removeAttr: see Attributes

attr: see Attributes

attr: see Attributes

addClass: see Attributes

Added in version 1.5

Added in version 1.2.3

Data

jQuery.hasData

Determine whether an element has any jQuery data associated with it.

jQuery.hasData(element):Boolean

element:Element A DOM element to be checked for data.

The jQuery.hasData() method provides a way to determine if an element currently has any values that were set using jQuery.data(). If no data
is associated with an element (there is no data object at all or the data object is empty), the method returns false; otherwise it returns true.

The primary advantage of jQuery.hasData(element) is that it does not create and associate a data object with the element if none currently
exists. In contrast, jQuery.data(element) always returns a data object to the caller, creating one if no data object previously existed.

Example 1: Set data on an element and see the results of hasData.

Javascript

$(function(){
 var $p = jQuery("p"), p = $p[0];
 $p.append(jQuery.hasData(p)+" "); /* false */
 jQuery.data(p, "testing", 123);
 $p.append(jQuery.hasData(p)+" "); /* true*/
 jQuery.removeData(p, "testing");
 $p.append(jQuery.hasData(p)+" "); /* false */
});

HTML

<p>Results: </p>

jQuery.removeData

Remove a previously-stored piece of data.

jQuery.removeData(element, name):jQuery

element:Element A DOM element from which to remove data.
name:String (optional) A string naming the piece of data to remove.

Note: This is a low-level method, you should probably use .removeData() instead.

The jQuery.removeData() method allows us to remove values that were previously set using jQuery.data(). When called with the name of a
key, jQuery.removeData() deletes that particular value; when called with no arguments, all values are removed.

Example 1: Set a data store for 2 names then remove one of them.

Javascript

var div = $("div")[0];
$("span:eq(0)").text("" + $("div").data("test1"));
jQuery.data(div, "test1", "VALUE-1");
jQuery.data(div, "test2", "VALUE-2");
$("span:eq(1)").text("" + jQuery.data(div, "test1"));
jQuery.removeData(div, "test1");
$("span:eq(2)").text("" + jQuery.data(div, "test1"));
$("span:eq(3)").text("" + jQuery.data(div, "test2"));

CSS

div { margin:2px; color:blue; }
span { color:red; }

Added in version 1.2.3

Added in version 1.4

HTML

<div>value1 before creation: </div>
<div>value1 after creation: </div>
<div>value1 after removal: </div>
<div>value2 after removal: </div>

jQuery.data

Store arbitrary data associated with the specified element. Returns the value that was set.

jQuery.data(element, key, value):Object

element:Element The DOM element to associate with the data.
key:String A string naming the piece of data to set.
value:Object The new data value.

Note: This is a low-level method; a more convenient .data() is also available.

The jQuery.data() method allows us to attach data of any type to DOM elements in a way that is safe from circular references and therefore
free from memory leaks. jQuery ensures that the data is removed when DOM elements are removed via jQuery methods, and when the user
leaves the page. We can set several distinct values for a single element and retrieve them later:

jQuery.data(document.body, 'foo', 52);
jQuery.data(document.body, 'bar', 'test');

Note: this method currently does not provide cross-platform support for setting data on XML documents, as Internet Explorer does not allow
data to be attached via expando properties.

Example 1: Store then retrieve a value from the div element.

Javascript

var div = $("div")[0];
 jQuery.data(div, "test", { first: 16, last: "pizza!" });
 $("span:first").text(jQuery.data(div, "test").first);
 $("span:last").text(jQuery.data(div, "test").last);

CSS

 div { color:blue; }
 span { color:red; }

HTML

<div>
 The values stored were

 and

 </div>

jQuery.data

Returns value at named data store for the element, as set by jQuery.data(element, name, value), or the full data store for the element.

jQuery.data(element):Object

element:Element The DOM element to query for the data.

Note: This is a low-level method; a more convenient .data() is also available.

Regarding HTML5 data-* attributes: This low-level method does NOT retrieve the data-* attributes unless the more convenient .data()
method has already retrieved them.

The jQuery.data() method allows us to attach data of any type to DOM elements in a way that is safe from circular references and therefore
from memory leaks. We can retrieve several distinct values for a single element one at a time, or as a set:

alert(jQuery.data(document.body, 'foo'));
alert(jQuery.data(document.body));

Added in version 1.3

The above lines alert the data values that were set on the body element. If nothing was set on that element, an empty string is returned.

Calling jQuery.data(element) retrieves all of the element's associated values as a JavaScript object. Note that jQuery itself uses this method to
store data for internal use, such as event handlers, so do not assume that it contains only data that your own code has stored.

Note: this method currently does not provide cross-platform support for setting data on XML documents, as Internet Explorer does not allow
data to be attached via expando properties.

Example 1: Get the data named "blah" stored at for an element.

Javascript

$("button").click(function(e) {
 var value, div = $("div")[0];

 switch ($("button").index(this)) {
 case 0 :
 value = jQuery.data(div, "blah");
 break;
 case 1 :
 jQuery.data(div, "blah", "hello");
 value = "Stored!";
 break;
 case 2 :
 jQuery.data(div, "blah", 86);
 value = "Stored!";
 break;
 case 3 :
 jQuery.removeData(div, "blah");
 value = "Removed!";
 break;
 }

 $("span").text("" + value);
});

CSS

div { margin:5px; background:yellow; }
button { margin:5px; font-size:14px; }
p { margin:5px; color:blue; }
span { color:red; }

HTML

<div>A div</div>
<button>Get "blah" from the div</button>
<button>Set "blah" to "hello"</button>

<button>Set "blah" to 86</button>
<button>Remove "blah" from the div</button>
<p>The "blah" value of this div is ?</p>

jQuery.dequeue

Execute the next function on the queue for the matched element.

jQuery.dequeue(element, queueName):jQuery

element:Element A DOM element from which to remove and execute a queued function.
queueName:String (optional) A string containing the name of the queue. Defaults to fx, the standard effects queue.

Note: This is a low-level method, you should probably use .dequeue() instead.

When jQuery.dequeue() is called, the next function on the queue is removed from the queue, and then executed. This function should in turn
(directly or indirectly) cause jQuery.dequeue() to be called, so that the sequence can continue.

Example 1: Use dequeue to end a custom queue function which allows the queue to keep going.

Added in version 1.3

Javascript

$("button").click(function () {
 $("div").animate({left:'+=200px'}, 2000);
 $("div").animate({top:'0px'}, 600);
 $("div").queue(function () {
 $(this).toggleClass("red");
 $.dequeue(this);
 });
 $("div").animate({left:'10px', top:'30px'}, 700);
 });

CSS

div { margin:3px; width:50px; position:absolute;
 height:50px; left:10px; top:30px;
 background-color:yellow; }
 div.red { background-color:red; }

HTML

<button>Start</button> <div></div>

jQuery.queue

Show the queue of functions to be executed on the matched element.

jQuery.queue(element, queueName):Array

element:Element A DOM element to inspect for an attached queue.
queueName:String (optional) A string containing the name of the queue. Defaults to fx, the standard effects queue.

Note: This is a low-level method, you should probably use .queue() instead.

Example 1: Show the length of the queue.

Javascript

$("#show").click(function () {
 var n = jQuery.queue($("div")[0], "fx");
 $("span").text("Queue length is: " + n.length);
 });
 function runIt() {
 $("div").show("slow");
 $("div").animate({left:'+=200'},2000);
 $("div").slideToggle(1000);
 $("div").slideToggle("fast");
 $("div").animate({left:'-=200'},1500);
 $("div").hide("slow");
 $("div").show(1200);
 $("div").slideUp("normal", runIt);
 }
 runIt();

CSS

div { margin:3px; width:40px; height:40px;
 position:absolute; left:0px; top:30px;
 background:green; display:none; }
 div.newcolor { background:blue; }
 span { color:red; }

HTML

<button id="show">Show Length of Queue</button>

 <div></div>

jQuery.queue

Manipulate the queue of functions to be executed on the matched element.

Added in version 1.3jQuery.queue(element, queueName, callback()):jQuery

element:Element A DOM element on which to add a queued function.
queueName:String A string containing the name of the queue. Defaults to fx, the standard effects queue.
callback():Function The new function to add to the queue.

Note: This is a low-level method, you should probably use .queue() instead.

Every element can have one or more queues of functions attached to it by jQuery. In most applications, only one queue (called fx) is used.
Queues allow a sequence of actions to be called on an element asynchronously, without halting program execution.

The jQuery.queue() method allows us to directly manipulate this queue of functions. Calling jQuery.queue() with a callback is particularly
useful; it allows us to place a new function at the end of the queue.

Note that when adding a function with jQuery.queue(), we should ensure that jQuery.dequeue() is eventually called so that the next function in
line executes.

Example 1: Queue a custom function.

Javascript

 $(document.body).click(function () {
 $("div").show("slow");
 $("div").animate({left:'+=200'},2000);
 jQuery.queue($("div")[0], "fx", function () {
 $(this).addClass("newcolor");
 jQuery.dequeue(this);
 });
 $("div").animate({left:'-=200'},500);
 jQuery.queue($("div")[0], "fx", function () {
 $(this).removeClass("newcolor");
 jQuery.dequeue(this);
 });
 $("div").slideUp();
 });

CSS

 div { margin:3px; width:40px; height:40px;
 position:absolute; left:0px; top:30px;
 background:green; display:none; }
 div.newcolor { background:blue; }

HTML

Click here...
 <div></div>

Example 2: Set a queue array to delete the queue.

Javascript

 $("#start").click(function () {
 $("div").show("slow");
 $("div").animate({left:'+=200'},5000);
 jQuery.queue($("div")[0], "fx", function () {
 $(this).addClass("newcolor");
 jQuery.dequeue(this);
 });
 $("div").animate({left:'-=200'},1500);
 jQuery.queue($("div")[0], "fx", function () {
 $(this).removeClass("newcolor");
 jQuery.dequeue(this);
 });
 $("div").slideUp();
 });
 $("#stop").click(function () {
 jQuery.queue($("div")[0], "fx", []);
 $("div").stop();
 });

Added in version 1.4

Added in version 1.2.3

CSS

 div { margin:3px; width:40px; height:40px;
 position:absolute; left:0px; top:30px;
 background:green; display:none; }
 div.newcolor { background:blue; }

HTML

 <button id="start">Start</button>
 <button id="stop">Stop</button>
 <div></div>

clearQueue

Remove from the queue all items that have not yet been run.

clearQueue(queueName):jQuery

queueName:String (optional) A string containing the name of the queue. Defaults to fx, the standard effects queue.

When the .clearQueue() method is called, all functions on the queue that have not been executed are removed from the queue. When used
without an argument, .clearQueue() removes the remaining functions from fx, the standard effects queue. In this way it is similar to
.stop(true). However, while the .stop() method is meant to be used only with animations, .clearQueue() can also be used to remove any
function that has been added to a generic jQuery queue with the .queue() method.

Example 1: Empty the queue.

Javascript

$("#start").click(function () {
 $("div").show("slow");
 $("div").animate({left:'+=200'},5000);
 $("div").queue(function () {
 $(this).addClass("newcolor");
 $(this).dequeue();
 });
 $("div").animate({left:'-=200'},1500);
 $("div").queue(function () {
 $(this).removeClass("newcolor");
 $(this).dequeue();
 });
 $("div").slideUp();
});
$("#stop").click(function () {
 $("div").clearQueue();
 $("div").stop();
});

CSS

div { margin:3px; width:40px; height:40px;
 position:absolute; left:0px; top:30px;
 background:green; display:none; }
div.newcolor { background:blue; }

HTML

<button id="start">Start</button>
<button id="stop">Stop</button>
<div></div>

removeData

Remove a previously-stored piece of data.

removeData(name):jQuery

name:String (optional) A string naming the piece of data to delete.

The .removeData() method allows us to remove values that were previously set using .data(). When called with the name of a key,

Added in version 1.4.3

.removeData() deletes that particular value; when called with no arguments, all values are removed.

NOTE: Starting with jQuery 1.4.3, calling .removeData() will cause the value of the property being removed to revert to the value of the data
attribute of the same name in the DOM, rather than being set to undefined.

Example 1: Set a data store for 2 names then remove one of them.

Javascript

 $("span:eq(0)").text("" + $("div").data("test1"));
 $("div").data("test1", "VALUE-1");
 $("div").data("test2", "VALUE-2");
 $("span:eq(1)").text("" + $("div").data("test1"));
 $("div").removeData("test1");
 $("span:eq(2)").text("" + $("div").data("test1"));
 $("span:eq(3)").text("" + $("div").data("test2"));

CSS

 div { margin:2px; color:blue; }
 span { color:red; }

HTML

<div>value1 before creation: </div>
 <div>value1 after creation: </div>
 <div>value1 after removal: </div>

 <div>value2 after removal: </div>

data

Store arbitrary data associated with the matched elements.

data(obj):jQuery

obj:Object An object of key-value pairs of data to update.

The .data() method allows us to attach data of any type to DOM elements in a way that is safe from circular references and therefore from
memory leaks.

We can set several distinct values for a single element and retrieve them later:

$('body').data('foo', 52);
$('body').data('bar', { myType: 'test', count: 40 });

$('body').data('foo'); // 52
$('body').data(); // {foo: 52, bar: { myType: 'test', count: 40 }}

In jQuery 1.4.3 setting an element's data object with .data(obj) extends the data previously stored with that element. jQuery itself uses the
.data() method to save information under the names 'events' and 'handle', and also reserves any data name starting with an underscore ('_') for
internal use.

Prior to jQuery 1.4.3 (starting in jQuery 1.4) the .data() method completely replaced all data, instead of just extending the data object. If you are
using third-party plugins it may not be advisable to completely replace the element's data object, since plugins may have also set data.

Due to the way browsers interact with plugins and external code, the .data() method cannot be used on <object> (unless it's a Flash plugin),
<applet> or <embed> elements.

Example 1: Store then retrieve a value from the div element.

Javascript

$("div").data("test", { first: 16, last: "pizza!" });
$("span:first").text($("div").data("test").first);
$("span:last").text($("div").data("test").last);

Added in version 1.4

CSS

 div { color:blue; }
 span { color:red; }

HTML

<div>
 The values stored were

 and

 </div>

data

Returns value at named data store for the first element in the jQuery collection, as set by data(name, value).

data():Object

The .data() method allows us to attach data of any type to DOM elements in a way that is safe from circular references and therefore from
memory leaks. We can retrieve several distinct values for a single element one at a time, or as a set:

alert($('body').data('foo'));
alert($('body').data());

The above lines alert the data values that were set on the body element. If no data at all was set on that element, undefined is returned.

alert($("body").data("foo")); //undefined
$("body").data("bar", "foobar");
alert($("body").data("foobar")); //foobar

HTML 5 data- Attributes

As of jQuery 1.4.3 HTML 5 data- attributes will be automatically pulled in to jQuery's data object. The treatment of attributes with embedded
dashes was changed in jQuery 1.6 to conform to the W3C HTML5 specification.

For example, given the following HTML:

<div data-role="page" data-last-value="43" data-hidden="true" data-options='{"name":"John"}'></div>

All of the following jQuery code will work.

$("div").data("role") === "page";
$("div").data("lastValue") === 43;
$("div").data("hidden") === true;
$("div").data("options").name === "John";

Every attempt is made to convert the string to a JavaScript value (this includes booleans, numbers, objects, arrays, and null) otherwise it is left
as a string. To retrieve the value's attribute as a string without any attempt to convert it, use the attr() method. When the data attribute is an
object (starts with '{') or array (starts with '[') then jQuery.parseJSON is used to parse the string; it must follow valid JSON syntax including
quoted property names. The data- attributes are pulled in the first time the data property is accessed and then are no longer accessed or mutated
(all data values are then stored internally in jQuery).

Calling .data() with no parameters retrieves all of the values as a JavaScript object. This object can be safely cached in a variable as long as a
new object is not set with .data(obj). Using the object directly to get or set values is faster than making individual calls to .data() to get or set
each value:

var mydata = $("#mydiv").data();
if (mydata.count < 9) {
 mydata.count = 43;
 mydata.status = "embiggened";
}

Example 1: Get the data named "blah" stored at for an element.

Added in version 1.2

Javascript

$("button").click(function(e) {
 var value;

 switch ($("button").index(this)) {
 case 0 :
 value = $("div").data("blah");
 break;
 case 1 :
 $("div").data("blah", "hello");
 value = "Stored!";
 break;
 case 2 :
 $("div").data("blah", 86);
 value = "Stored!";
 break;
 case 3 :
 $("div").removeData("blah");
 value = "Removed!";
 break;
 }

 $("span").text("" + value);
});

CSS

 div { margin:5px; background:yellow; }
 button { margin:5px; font-size:14px; }
 p { margin:5px; color:blue; }
 span { color:red; }

HTML

<div>A div</div>
 <button>Get "blah" from the div</button>
 <button>Set "blah" to "hello"</button>

 <button>Set "blah" to 86</button>
 <button>Remove "blah" from the div</button>
 <p>The "blah" value of this div is ?</p>

dequeue

Execute the next function on the queue for the matched elements.

dequeue(queueName):jQuery

queueName:String (optional) A string containing the name of the queue. Defaults to fx, the standard effects queue.

When .dequeue() is called, the next function on the queue is removed from the queue, and then executed. This function should in turn (directly
or indirectly) cause .dequeue() to be called, so that the sequence can continue.

Example 1: Use dequeue to end a custom queue function which allows the queue to keep going.

Javascript

$("button").click(function () {
 $("div").animate({left:'+=200px'}, 2000);
 $("div").animate({top:'0px'}, 600);
 $("div").queue(function () {
 $(this).toggleClass("red");
 $(this).dequeue();
 });
 $("div").animate({left:'10px', top:'30px'}, 700);
});

Added in version 1.2

Added in version 1.2

CSS

 div { margin:3px; width:50px; position:absolute;
 height:50px; left:10px; top:30px;
 background-color:yellow; }
 div.red { background-color:red; }

HTML

<button>Start</button>
<div></div>

queue

Show the queue of functions to be executed on the matched elements.

queue(queueName):Array

queueName:String (optional) A string containing the name of the queue. Defaults to fx, the standard effects queue.

Example 1: Show the length of the queue.

Javascript

var div = $("div");

function runIt() {
 div.show("slow");
 div.animate({left:'+=200'},2000);
 div.slideToggle(1000);
 div.slideToggle("fast");
 div.animate({left:'-=200'},1500);
 div.hide("slow");
 div.show(1200);
 div.slideUp("normal", runIt);
}

function showIt() {
 var n = div.queue("fx");
 $("span").text(n.length);
 setTimeout(showIt, 100);
}

runIt();
showIt();

CSS

div { margin:3px; width:40px; height:40px;
 position:absolute; left:0px; top:60px;
 background:green; display:none; }
 div.newcolor { background:blue; }
 p { color:red; }

HTML

 <p>The queue length is: </p>
 <div></div>

queue

Manipulate the queue of functions to be executed on the matched elements.

queue(queueName, callback(next)):jQuery

queueName:String (optional) A string containing the name of the queue. Defaults to fx, the standard effects queue.
callback(next):Function The new function to add to the queue, with a function to call that will dequeue the next item.

Every element can have one to many queues of functions attached to it by jQuery. In most applications, only one queue (called fx) is used.
Queues allow a sequence of actions to be called on an element asynchronously, without halting program execution. The typical example of this
is calling multiple animation methods on an element. For example:

$('#foo').slideUp().fadeIn();

When this statement is executed, the element begins its sliding animation immediately, but the fading transition is placed on the fx queue to be
called only once the sliding transition is complete.

The .queue() method allows us to directly manipulate this queue of functions. Calling .queue() with a callback is particularly useful; it allows
us to place a new function at the end of the queue.

This feature is similar to providing a callback function with an animation method, but does not require the callback to be given at the time the
animation is performed.

$('#foo').slideUp();
$('#foo').queue(function() {
 alert('Animation complete.');
 $(this).dequeue();
});

This is equivalent to:

$('#foo').slideUp(function() {
 alert('Animation complete.');
});

Note that when adding a function with .queue(), we should ensure that .dequeue() is eventually called so that the next function in line
executes.

In jQuery 1.4 the function that's called is passed in another function, as the first argument, that when called automatically dequeues the next
item and keeps the queue moving. You would use it like so:

$("#test").queue(function(next) {
 // Do some stuff...
 next();
});

Example 1: Queue a custom function.

Javascript

$(document.body).click(function () {
 $("div").show("slow");
 $("div").animate({left:'+=200'},2000);
 $("div").queue(function () {
 $(this).addClass("newcolor");
 $(this).dequeue();
 });
 $("div").animate({left:'-=200'},500);
 $("div").queue(function () {
 $(this).removeClass("newcolor");
 $(this).dequeue();
 });
 $("div").slideUp();
 });

CSS

 div { margin:3px; width:40px; height:40px;
 position:absolute; left:0px; top:30px;
 background:green; display:none; }
 div.newcolor { background:blue; }

HTML

Click here...
 <div></div>

Example 2: Set a queue array to delete the queue.

Javascript

$("#start").click(function () {
 $("div").show("slow");
 $("div").animate({left:'+=200'},5000);
 $("div").queue(function () {
 $(this).addClass("newcolor");
 $(this).dequeue();
 });
 $("div").animate({left:'-=200'},1500);
 $("div").queue(function () {
 $(this).removeClass("newcolor");
 $(this).dequeue();
 });
 $("div").slideUp();
 });
 $("#stop").click(function () {
 $("div").queue("fx", []);
 $("div").stop();
 });

CSS

 div { margin:3px; width:40px; height:40px;
 position:absolute; left:0px; top:30px;
 background:green; display:none; }
 div.newcolor { background:blue; }

HTML

<button id="start">Start</button>
 <button id="stop">Stop</button>
 <div></div>

Added in version 1.0

Forms

submit

Bind an event handler to the "submit" JavaScript event, or trigger that event on an element.

submit():jQuery

This method is a shortcut for .bind('submit', handler) in the first variation, and .trigger('submit') in the third.

The submit event is sent to an element when the user is attempting to submit a form. It can only be attached to <form> elements. Forms can be
submitted either by clicking an explicit <input type="submit">, <input type="image">, or <button type="submit">, or by pressing Enter when
certain form elements have focus.

Depending on the browser, the Enter key may only cause a form submission if the form has exactly one text field, or only when
there is a submit button present. The interface should not rely on a particular behavior for this key unless the issue is forced by
observing the keypress event for presses of the Enter key.

For example, consider the HTML:

<form id="target" action="destination.html">
 <input type="text" value="Hello there" />
 <input type="submit" value="Go" />
</form>
<div id="other">
 Trigger the handler
</div>

The event handler can be bound to the form:

$('#target').submit(function() {
 alert('Handler for .submit() called.');
 return false;
});

Now when the form is submitted, the message is alerted. This happens prior to the actual submission, so we can cancel the submit action by
calling .preventDefault() on the event object or by returning false from our handler. We can trigger the event manually when another element
is clicked:

$('#other').click(function() {
 $('#target').submit();
});

After this code executes, clicks on Trigger the handler will also display the message. In addition, the default submit action on the form will be
fired, so the form will be submitted.

The JavaScript submit event does not bubble in Internet Explorer. However, scripts that rely on event delegation with the submit event will
work consistently across browsers as of jQuery 1.4, which has normalized the event's behavior.

Example 1: If you'd like to prevent forms from being submitted unless a flag variable is set, try:

Javascript

 $("form").submit(function() {
 if ($("input:first").val() == "correct") {
 $("span").text("Validated...").show();
 return true;
 }
 $("span").text("Not valid!").show().fadeOut(1000);
 return false;
 });

CSS

 p { margin:0; color:blue; }
 div,p { margin-left:10px; }
 span { color:red; }

Added in version 1.0

HTML

<p>Type 'correct' to validate.</p>
 <form action="javascript:alert('success!');">
 <div>
 <input type="text" />

 <input type="submit" />
 </div>
 </form>

Example 2: If you'd like to prevent forms from being submitted unless a flag variable is set, try:

Javascript

$("form").submit(function () {
 return this.some_flag_variable;
});

Example 3: To trigger the submit event on the first form on the page, try:

Javascript

$("form:first").submit();

select

Bind an event handler to the "select" JavaScript event, or trigger that event on an element.

select():jQuery

This method is a shortcut for .bind('select', handler) in the first two variations, and .trigger('select') in the third.

The select event is sent to an element when the user makes a text selection inside it. This event is limited to <input type="text"> fields and
<textarea> boxes.

For example, consider the HTML:

<form>
 <input id="target" type="text" value="Hello there" />
</form>
<div id="other">
 Trigger the handler
</div>

The event handler can be bound to the text input:

$('#target').select(function() {
 alert('Handler for .select() called.');
});

Now when any portion of the text is selected, the alert is displayed. Merely setting the location of the insertion point will not trigger the event.
To trigger the event manually, apply .select() without an argument:

$('#other').click(function() {
 $('#target').select();
});

After this code executes, clicks on the Trigger button will also alert the message:

Handler for .select() called.

In addition, the default select action on the field will be fired, so the entire text field will be selected.

The method for retrieving the current selected text differs from one browser to another. A number of jQuery plug-ins offer cross-
platform solutions.

Example 1: To do something when text in input boxes is selected:

Added in version 1.0

Javascript

 $(":input").select(function () {
 $("div").text("Something was selected").show().fadeOut(1000);
 });

CSS

 p { color:blue; }
 div { color:red; }

HTML

<p>

 Click and drag the mouse to select text in the inputs.
 </p>
 <input type="text" value="Some text" />
 <input type="text" value="to test on" />

 <div></div>

Example 2: To trigger the select event on all input elements, try:

Javascript

$("input").select();

change

Bind an event handler to the "change" JavaScript event, or trigger that event on an element.

change():jQuery

This method is a shortcut for .bind('change', handler) in the first two variations, and .trigger('change') in the third.

The change event is sent to an element when its value changes. This event is limited to <input> elements, <textarea> boxes and <select>
elements. For select boxes, checkboxes, and radio buttons, the event is fired immediately when the user makes a selection with the mouse, but
for the other element types the event is deferred until the element loses focus.

For example, consider the HTML:

<form>
 <input class="target" type="text" value="Field 1" />
 <select class="target">
 <option value="option1" selected="selected">Option 1</option>
 <option value="option2">Option 2</option>
 </select>
</form>
<div id="other">
 Trigger the handler
</div>

The event handler can be bound to the text input and the select box:

$('.target').change(function() {
 alert('Handler for .change() called.');
});

Now when the second option is selected from the dropdown, the alert is displayed. It is also displayed if you change the text in the field and
then click away. If the field loses focus without the contents having changed, though, the event is not triggered. To trigger the event manually,
apply .change() without arguments:

$('#other').click(function() {
 $('.target').change();
});

After this code executes, clicks on Trigger the handler will also alert the message. The message will display twice, because the handler has been
bound to the change event on both of the form elements.

As of jQuery 1.4, the change event bubbles in Internet Explorer, behaving consistently with the event in other modern browsers.

Added in version 1.0

Example 1: Attaches a change event to the select that gets the text for each selected option and writes them in the div. It then triggers the event
for the initial text draw.

Javascript

 $("select").change(function () {
 var str = "";
 $("select option:selected").each(function () {
 str += $(this).text() + " ";
 });
 $("div").text(str);
 })
 .change();

CSS

 div { color:red; }

HTML

<select name="sweets" multiple="multiple">
 <option>Chocolate</option>
 <option selected="selected">Candy</option>

 <option>Taffy</option>
 <option selected="selected">Caramel</option>
 <option>Fudge</option>
 <option>Cookie</option>

 </select>
 <div></div>

Example 2: To add a validity test to all text input elements:

Javascript

$("input[type='text']").change(function() {
 // check input ($(this).val()) for validity here
});

blur

Bind an event handler to the "blur" JavaScript event, or trigger that event on an element.

blur():jQuery

This method is a shortcut for .bind('blur', handler) in the first two variations, and .trigger('blur') in the third.

The blur event is sent to an element when it loses focus. Originally, this event was only applicable to form elements, such as <input>. In recent
browsers, the domain of the event has been extended to include all element types. An element can lose focus via keyboard commands, such as
the Tab key, or by mouse clicks elsewhere on the page.

For example, consider the HTML:

<form>
 <input id="target" type="text" value="Field 1" />
 <input type="text" value="Field 2" />
</form>
<div id="other">
 Trigger the handler
</div>
The event handler can be bound to the first input field:
$('#target').blur(function() {
 alert('Handler for .blur() called.');
});

Now if the first field has the focus, clicking elsewhere or tabbing away from it displays the alert:

Handler for .blur() called.

To trigger the event programmatically, apply .blur() without an argument:

Added in version 1.0

$('#other').click(function() {
 $('#target').blur();
});

After this code executes, clicks on Trigger the handler will also alert the message.

The blur event does not bubble in Internet Explorer. Therefore, scripts that rely on event delegation with the blur event will not work
consistently across browsers. As of version 1.4.2, however, jQuery works around this limitation by mapping blur to the focusout event in its
event delegation methods, .live() and .delegate().

Example 1: To trigger the blur event on all paragraphs:

Javascript

$("p").blur();

focus

Bind an event handler to the "focus" JavaScript event, or trigger that event on an element.

focus():jQuery

This method is a shortcut for .bind('focus', handler) in the first and second variations, and .trigger('focus') in the third.
The focus event is sent to an element when it gains focus. This event is implicitly applicable to a limited set of elements, such as form
elements (<input>, <select>, etc.) and links (<a href>). In recent browser versions, the event can be extended to include all element types
by explicitly setting the element's tabindex property. An element can gain focus via keyboard commands, such as the Tab key, or by
mouse clicks on the element.
Elements with focus are usually highlighted in some way by the browser, for example with a dotted line surrounding the element. The
focus is used to determine which element is the first to receive keyboard-related events.

For example, consider the HTML:

<form>
 <input id="target" type="text" value="Field 1" />
 <input type="text" value="Field 2" />
</form>
<div id="other">
 Trigger the handler
</div>

The event handler can be bound to the first input field:

$('#target').focus(function() {
 alert('Handler for .focus() called.');
});

Now clicking on the first field, or tabbing to it from another field, displays the alert:

Handler for .focus() called.

We can trigger the event when another element is clicked:

$('#other').click(function() {
 $('#target').focus();
});

After this code executes, clicks on Trigger the handler will also alert the message.

The focus event does not bubble in Internet Explorer. Therefore, scripts that rely on event delegation with the focus event will not work
consistently across browsers. As of version 1.4.2, however, jQuery works around this limitation by mapping focus to the focusin event in its
event delegation methods, .live() and .delegate().

Triggering the focus on hidden elements causes an error in Internet Explorer. Take care to only call .focus() without parameters on
elements that are visible.

Example 1: Fire focus.

CSS

span {display:none;}

Added in version 1.2

Javascript

 $("input").focus(function () {
 $(this).next("span").css('display','inline').fadeOut(1000);
 });

HTML

<p><input type="text" /> focus fire</p>

<p><input type="password" /> focus fire</p>

Example 2: To stop people from writing in text input boxes, try:

Javascript

$("input[type=text]").focus(function(){
 $(this).blur();
});

Example 3: To focus on a login input box with id 'login' on page startup, try:

Javascript

$(document).ready(function(){
 $("#login").focus();
});

serializeArray

Encode a set of form elements as an array of names and values.

serializeArray():Array

The .serializeArray() method creates a JavaScript array of objects, ready to be encoded as a JSON string. It operates on a jQuery object
representing a set of form elements. The form elements can be of several types:

<form>
 <div><input type="text" name="a" value="1" id="a" /></div>
 <div><input type="text" name="b" value="2" id="b" /></div>
 <div><input type="hidden" name="c" value="3" id="c" /></div>
 <div>
 <textarea name="d" rows="8" cols="40">4</textarea>
 </div>
 <div><select name="e">
 <option value="5" selected="selected">5</option>
 <option value="6">6</option>
 <option value="7">7</option>
 </select></div>
 <div>
 <input type="checkbox" name="f" value="8" id="f" />
 </div>
 <div>
 <input type="submit" name="g" value="Submit" id="g" />
 </div>
</form>

The .serializeArray() method uses the standard W3C rules for successful controls to determine which elements it should include; in particular
the element cannot be disabled and must contain a name attribute. No submit button value is serialized since the form was not submitted using a
button. Data from file select elements is not serialized.

This method can act on a jQuery object that has selected individual form elements, such as <input>, <textarea>, and <select>. However, it is
typically easier to select the <form> tag itself for serialization:

$('form').submit(function() {
 console.log($(this).serializeArray());
 return false;
});

This produces the following data structure (provided that the browser supports console.log):

[

 {
 name: "a",
 value: "1"
 },
 {
 name: "b",
 value: "2"
 },
 {
 name: "c",
 value: "3"
 },
 {
 name: "d",
 value: "4"
 },
 {
 name: "e",
 value: "5"
 }
]

Example 1: Get the values from a form, iterate through them, and append them to a results display.

Javascript

 function showValues() {
 var fields = $(":input").serializeArray();
 $("#results").empty();
 jQuery.each(fields, function(i, field){
 $("#results").append(field.value + " ");
 });
 }

 $(":checkbox, :radio").click(showValues);
 $("select").change(showValues);
 showValues();

CSS

 body, select { font-size:14px; }
 form { margin:5px; }
 p { color:red; margin:5px; }
 b { color:blue; }

HTML

<p>Results: </p>

 <form>
 <select name="single">
 <option>Single</option>
 <option>Single2</option>

 </select>
 <select name="multiple" multiple="multiple">
 <option selected="selected">Multiple</option>
 <option>Multiple2</option>

 <option selected="selected">Multiple3</option>
 </select>

 <input type="checkbox" name="check" value="check1" id="ch1"/>

 <label for="ch1">check1</label>
 <input type="checkbox" name="check" value="check2" checked="checked" id="ch2"/>

 <label for="ch2">check2</label>
 <input type="radio" name="radio" value="radio1" checked="checked" id="r1"/>

 <label for="r1">radio1</label>
 <input type="radio" name="radio" value="radio2" id="r2"/>

 <label for="r2">radio2</label>
 </form>

Added in version 1.0

serialize

Encode a set of form elements as a string for submission.

serialize():String

The .serialize() method creates a text string in standard URL-encoded notation. It operates on a jQuery object representing a set of form
elements. The form elements can be of several types:

<form>
 <div><input type="text" name="a" value="1" id="a" /></div>
 <div><input type="text" name="b" value="2" id="b" /></div>
 <div><input type="hidden" name="c" value="3" id="c" /></div>
 <div>
 <textarea name="d" rows="8" cols="40">4</textarea>
 </div>
 <div><select name="e">
 <option value="5" selected="selected">5</option>
 <option value="6">6</option>
 <option value="7">7</option>
 </select></div>
 <div>
 <input type="checkbox" name="f" value="8" id="f" />
 </div>
 <div>
 <input type="submit" name="g" value="Submit" id="g" />
 </div>
</form>

The .serialize() method can act on a jQuery object that has selected individual form elements, such as <input>, <textarea>, and <select>.
However, it is typically easier to select the <form> tag itself for serialization:

$('form').submit(function() {
 alert($(this).serialize());
 return false;
});

This produces a standard-looking query string:

a=1&b=2&c=3&d=4&e=5

Warning: selecting both the form and its children will cause duplicates in the serialized string.

Note: Only "successful controls" are serialized to the string. No submit button value is serialized since the form was not submitted using a
button. For a form element's value to be included in the serialized string, the element must have a name attribute. Values from checkboxes and
radio buttons (inputs of type "radio" or "checkbox") are included only if they are checked. Data from file select elements is not serialized.

Example 1: Serialize a form to a query string, that could be sent to a server in an Ajax request.

Javascript

 function showValues() {
 var str = $("form").serialize();
 $("#results").text(str);
 }
 $(":checkbox, :radio").click(showValues);
 $("select").change(showValues);
 showValues();

CSS

 body, select { font-size:12px; }
 form { margin:5px; }
 p { color:red; margin:5px; font-size:14px; }
 b { color:blue; }

Added in version 1.4

HTML

<form>
 <select name="single">
 <option>Single</option>
 <option>Single2</option>
 </select>

 <select name="multiple" multiple="multiple">
 <option selected="selected">Multiple</option>
 <option>Multiple2</option>

 <option selected="selected">Multiple3</option>
 </select>

 <input type="checkbox" name="check" value="check1" id="ch1"/>

 <label for="ch1">check1</label>

 <input type="checkbox" name="check" value="check2" checked="checked" id="ch2"/>

 <label for="ch2">check2</label>

 <input type="radio" name="radio" value="radio1" checked="checked" id="r1"/>

 <label for="r1">radio1</label>
 <input type="radio" name="radio" value="radio2" id="r2"/>

 <label for="r2">radio2</label>
 </form>
 <p><tt id="results"></tt></p>

jQuery.param

Create a serialized representation of an array or object, suitable for use in a URL query string or Ajax request.

jQuery.param(obj, traditional):String

obj:Array, Object An array or object to serialize.
traditional:Boolean A Boolean indicating whether to perform a traditional "shallow" serialization.

This function is used internally to convert form element values into a serialized string representation (See .serialize() for more information).

As of jQuery 1.3, the return value of a function is used instead of the function as a String.

As of jQuery 1.4, the $.param() method serializes deep objects recursively to accommodate modern scripting languages and frameworks such
as PHP and Ruby on Rails. You can disable this functionality globally by setting jQuery.ajaxSettings.traditional = true;.

If the object passed is in an Array, it must be an array of objects in the format returned by .serializeArray()

[{name:"first",value:"Rick"},
{name:"last",value:"Astley"},
{name:"job",value:"Rock Star"}]

Note: Because some frameworks have limited ability to parse serialized arrays, developers should exercise caution when passing an
obj argument that contains objects or arrays nested within another array.

Note: Because there is no universally agreed-upon specification for param strings, it is not possible to encode complex data
structures using this method in a manner that works ideally across all languages supporting such input. Until such time that there is,
the $.param method will remain in its current form.

In jQuery 1.4, HTML5 input elements are also serialized.

We can display a query string representation of an object and a URI-decoded version of the same as follows:

var myObject = {
 a: {
 one: 1,
 two: 2,
 three: 3
 },
 b: [1,2,3]
};

var recursiveEncoded = $.param(myObject);
var recursiveDecoded = decodeURIComponent($.param(myObject));

alert(recursiveEncoded);
alert(recursiveDecoded);

The values of recursiveEncoded and recursiveDecoded are alerted as follows:

a%5Bone%5D=1&a%5Btwo%5D=2&a%5Bthree%5D=3&b%5B%5D=1&b%5B%5D=2&b%5B%5D=3

a[one]=1&a[two]=2&a[three]=3&b[]=1&b[]=2&b[]=3

To emulate the behavior of $.param() prior to jQuery 1.4, we can set the traditional argument to true:

var myObject = {
 a: {
 one: 1,
 two: 2,
 three: 3
 },
 b: [1,2,3]
};
var shallowEncoded = $.param(myObject, true);
var shallowDecoded = decodeURIComponent(shallowEncoded);

alert(shallowEncoded);
alert(shallowDecoded);

The values of shallowEncoded and shallowDecoded are alerted as follows:

a=%5Bobject+Object%5D&b=1&b=2&b=3

a=[object+Object]&b=1&b=2&b=3

Example 1: Serialize a key/value object.

Javascript

 var params = { width:1680, height:1050 };
 var str = jQuery.param(params);
 $("#results").text(str);

CSS

div { color:red; }

HTML

<div id="results"></div>

Example 2: Serialize a few complex objects

Javascript

// <=1.3.2:
$.param({ a: [2,3,4] }) // "a=2&a=3&a=4"
// >=1.4:
$.param({ a: [2,3,4] }) // "a[]=2&a[]=3&a[]=4"

// <=1.3.2:
$.param({ a: { b:1,c:2 }, d: [3,4,{ e:5 }] }) // "a=[object+Object]&d=3&d=4&d=[object+Object]"
// >=1.4:
$.param({ a: { b:1,c:2 }, d: [3,4,{ e:5 }] }) // "a[b]=1&a[c]=2&d[]=3&d[]=4&d[2][e]=5"

CSS

div { color:red; }

val: see Attributes

val: see Attributes

Added in version 1.0

Events

toggle

Bind two or more handlers to the matched elements, to be executed on alternate clicks.

toggle(handler(eventObject), handler(eventObject), handler(eventObject)):jQuery

handler(eventObject):Function A function to execute every even time the element is clicked.
handler(eventObject):Function A function to execute every odd time the element is clicked.
handler(eventObject):Function (optional) Additional handlers to cycle through after clicks.

The .toggle() method binds a handler for the click event, so the rules outlined for the triggering of click apply here as well.

For example, consider the HTML:
<div id="target">
 Click here
</div>

Event handlers can then be bound to the <div>:

$('#target').toggle(function() {
 alert('First handler for .toggle() called.');
}, function() {
 alert('Second handler for .toggle() called.');
});

As the element is clicked repeatedly, the messages alternate:

First handler for .toggle() called.

Second handler for .toggle() called.

First handler for .toggle() called.

Second handler for .toggle() called.

First handler for .toggle() called.

If more than two handlers are provided, .toggle() will cycle among all of them. For example, if there are three handlers, then the first handler
will be called on the first click, the fourth click, the seventh click, and so on.

Note: jQuery also provides an animation method named .toggle() that toggles the visibility of elements. Whether the animation or
the event method is fired depends on the set of arguments passed.

The .toggle() method is provided for convenience. It is relatively straightforward to implement the same behavior by hand, and this can be
necessary if the assumptions built into .toggle() prove limiting. For example, .toggle() is not guaranteed to work correctly if applied twice to
the same element. Since .toggle() internally uses a click handler to do its work, we must unbind click to remove a behavior attached with
.toggle(), so other click handlers can be caught in the crossfire. The implementation also calls .preventDefault() on the event, so links will
not be followed and buttons will not be clicked if .toggle() has been called on the element.

Example 1: Click to toggle highlight on the list item.

Javascript

 $("li").toggle(
 function () {
 $(this).css({"list-style-type":"disc", "color":"blue"});
 },
 function () {
 $(this).css({"list-style-type":"disc", "color":"red"});
 },
 function () {
 $(this).css({"list-style-type":"", "color":""});
 }
);

Added in version 1.4.3

Added in version 1.6

CSS

 ul { margin:10px; list-style:inside circle; font-weight:bold; }
 li { cursor:pointer; }

HTML

 Go to the store
 Pick up dinner
 Debug crash

 Take a jog

Example 2: To toggle a style on table cells:

Javascript

$("td").toggle(
 function () {
 $(this).addClass("selected");
 },
 function () {
 $(this).removeClass("selected");
 }
);

event.namespace

The namespace specified when the event was triggered.

This will likely be used primarily by plugin authors who wish to handle tasks differently depending on the event namespace used.

Example 1: Determine the event namespace used.

Javascript

$("p").bind("test.something", function(event) {
 alert(event.namespace);
});
$("button").click(function(event) {
 $("p").trigger("test.something");
});

HTML

<button>display event.namespace</button>
<p></p>

undelegate

Remove a handler from the event for all elements which match the current selector, now or in the future, based upon a specific set of root
elements.

undelegate(namespace):jQuery

namespace:String A string containing a namespace to unbind all events from.

Undelegate is a way of removing event handlers that have been bound using .delegate(). It works virtually identically to .die() with the addition
of a selector filter argument (which is required for delegation to work).

Example 1: Can bind and unbind events to the colored button.

Javascript

function aClick() {
 $("div").show().fadeOut("slow");
}
$("#bind").click(function () {
 $("body").delegate("#theone", "click", aClick)
 .find("#theone").text("Can Click!");
});
$("#unbind").click(function () {
 $("body").undelegate("#theone", "click", aClick)
 .find("#theone").text("Does nothing...");
});

CSS

button { margin:5px; }
button#theone { color:red; background:yellow; }

HTML

<button id="theone">Does nothing...</button>
<button id="bind">Bind Click</button>
<button id="unbind">Unbind Click</button>
<div style="display:none;">Click!</div>

Example 2: To unbind all delegated events from all paragraphs, write:

Javascript

$("p").undelegate()

Example 3: To unbind all delegated click events from all paragraphs, write:

Javascript

$("p").undelegate("click")

Example 4: To undelegate just one previously bound handler, pass the function in as the third argument:

Javascript

var foo = function () {
 // code to handle some kind of event
};

// ... now foo will be called when paragraphs are clicked ...
$("body").delegate("p", "click", foo);

// ... foo will no longer be called.
$("body").undelegate("p", "click", foo);

Example 5: To unbind all delegated events by their namespace:

Javascript

var foo = function () {
 // code to handle some kind of event
};

// delegate events under the ".whatever" namespace
$("form").delegate(":button", "click.whatever", foo);

$("form").delegate("input[type='text']", "keypress.whatever", foo);

// unbind all events delegated under the ".whatever" namespace

$("form").undelegate(".whatever");

delegate

Added in version 1.4.3

Attach a handler to one or more events for all elements that match the selector, now or in the future, based on a specific set of root elements.

delegate(selector, events):jQuery

selector:String A selector to filter the elements that trigger the event.
events:Map A map of one or more event types and functions to execute for them.

Delegate is an alternative to using the .live() method, allowing for each binding of event delegation to specific DOM elements. For example the
following delegate code:

$("table").delegate("td", "hover", function(){
$(this).toggleClass("hover");

});

Is equivalent to the following code written using .live():

$("table").each(function(){
$("td", this).live("hover", function(){

$(this).toggleClass("hover");
});

});

See also the .undelegate() method for a way of removing event handlers added in .delegate().

Passing and handling event data works the same way as it does for .bind().

Example 1: Click a paragraph to add another. Note that .delegate() binds the click event to all paragraphs - even new ones.

Javascript

 $("body").delegate("p", "click", function(){
 $(this).after("<p>Another paragraph!</p>");
 });

CSS

 p { background:yellow; font-weight:bold; cursor:pointer;
 padding:5px; }
 p.over { background: #ccc; }
 span { color:red; }

HTML

<p>Click me!</p>

Example 2: To display each paragraph's text in an alert box whenever it is clicked:

Javascript

$("body").delegate("p", "click", function(){
 alert($(this).text());
});

Example 3: To cancel a default action and prevent it from bubbling up, return false:

Javascript

$("body").delegate("a", "click", function() { return false; })

Example 4: To cancel only the default action by using the preventDefault method.

Javascript

$("body").delegate("a", "click", function(event){
 event.preventDefault();
});

Added in version 1.4

Example 5: Can bind custom events too.

Javascript

 $("body").delegate("p", "myCustomEvent", function(e, myName, myValue){
 $(this).text("Hi there!");
 $("span").stop().css("opacity", 1)
 .text("myName = " + myName)
 .fadeIn(30).fadeOut(1000);
 });
 $("button").click(function () {
 $("p").trigger("myCustomEvent");
 });

CSS

 p { color:red; }
 span { color:blue; }

HTML

<p>Has an attached custom event.</p>
 <button>Trigger custom event</button>

jQuery.proxy

Takes a function and returns a new one that will always have a particular context.

jQuery.proxy(context, name):Function

context:Object The object to which the context of the function should be set.
name:String The name of the function whose context will be changed (should be a property of the context

object).

This method is most useful for attaching event handlers to an element where the context is pointing back to a different object. Additionally,
jQuery makes sure that even if you bind the function returned from jQuery.proxy() it will still unbind the correct function if passed the
original.

Example 1: Change the context of functions bound to a click handler using the "function, context" signature. Unbind the first handler after first
click.

HTML

<p><button type="button" id="test">Test</button></p>
<div id="log"></div>

Added in version 1.4.3

Javascript

var me = {
 type: "zombie",
 test: function(event) {
 // Without proxy, `this` would refer to the event target
 // use event.target to reference that element.
 var element = event.target;
 $(element).css("background-color", "red");

 // With proxy, `this` refers to the me object encapsulating
 // this function.
 $("#log").append("Hello " + this.type + "
");
 $("#test").unbind("click", this.test);
 }
};

var you = {
 type: "person",
 test: function(event) {
 $("#log").append(this.type + " ");
 }
};

// execute you.test() in the context of the `you` object
// no matter where it is called
// i.e. the `this` keyword will refer to `you`
var youClick = $.proxy(you.test, you);

// attach click handlers to #test
$("#test")
 // this === "zombie"; handler unbound after first click
 .click($.proxy(me.test, me))
 // this === "person"
 .click(youClick)
 // this === "zombie"
 .click($.proxy(you.test, me))
 // this === "<button> element"
 .click(you.test);

Example 2: Enforce the context of the function using the "context, function name" signature. Unbind the handler after first click.

HTML

 <p><button id="test">Test</button></p>
 <p id="log"></p>

Javascript

 var obj = {
 name: "John",
 test: function() {
 $("#log").append(this.name);
 $("#test").unbind("click", obj.test);
 }
 };

 $("#test").click(jQuery.proxy(obj, "test"));

focusout

Bind an event handler to the "focusout" JavaScript event.

focusout(eventData, handler(eventObject)):jQuery

eventData:Object (optional) A map of data that will be passed to the event handler.
handler(eventObject):Function A function to execute each time the event is triggered.

This method is a shortcut for .bind('focusout', handler).

The focusout event is sent to an element when it, or any element inside of it, loses focus. This is distinct from the blur event in that it supports
detecting the loss of focus from parent elements (in other words, it supports event bubbling).

This event will likely be used together with the focusin event.

Added in version 1.4.3

Example 1: Watch for a loss of focus to occur inside paragraphs and note the difference between the focusout count and the blur count.

CSS

.inputs { float: left; margin-right: 1em; }

.inputs p { margin-top: 0; }

Javascript

var fo = 0, b = 0;
$("p").focusout(function() {
 fo++;
 $("#fo")
 .text("focusout fired: " + fo + "x");
}).blur(function() {
 b++;
 $("#b")
 .text("blur fired: " + b + "x");

});

HTML

<div class="inputs">
 <p>
 <input type="text" />

 <input type="text" />
 </p>
 <p>
 <input type="password" />
 </p>
</div>
<div id="fo">focusout fire</div>
<div id="b">blur fire</div>

focusin

Bind an event handler to the "focusin" JavaScript event.

focusin(eventData, handler(eventObject)):jQuery

eventData:Object (optional) A map of data that will be passed to the event handler.
handler(eventObject):Function A function to execute each time the event is triggered.

This method is a shortcut for .bind('focusin', handler).

The focusin event is sent to an element when it, or any element inside of it, gains focus. This is distinct from the focus event in that it supports
detecting the focus event on parent elements (in other words, it supports event bubbling).

This event will likely be used together with the focusout event.

Example 1: Watch for a focus to occur within the paragraphs on the page.

CSS

span {display:none;}

Javascript

 $("p").focusin(function() {
 $(this).find("span").css('display','inline').fadeOut(1000);
 });

HTML

<p><input type="text" /> focusin fire</p>
<p><input type="password" /> focusin fire</p>

event.isImmediatePropagationStopped

Returns whether event.stopImmediatePropagation() was ever called on this event object.

Added in version 1.3

Added in version 1.3

event.isImmediatePropagationStopped():Boolean

This property was introduced in DOM level 3.

Example 1: Checks whether event.stopImmediatePropagation() was called.

Javascript

function immediatePropStopped(e) {
 var msg = "";
 if (e.isImmediatePropagationStopped()) {
 msg = "called"
 } else {
 msg = "not called";
 }
 $("#stop-log").append("<div>" + msg + "</div>");
}

$("button").click(function(event) {
 immediatePropStopped(event);
 event.stopImmediatePropagation();
 immediatePropStopped(event);
});

HTML

 <button>click me</button>
 <div id="stop-log"></div>

event.stopImmediatePropagation

Keeps the rest of the handlers from being executed and prevents the event from bubbling up the DOM tree.

event.stopImmediatePropagation():

In addition to keeping any additional handlers on an element from being executed, this method also stops the bubbling by implicitly calling
event.stopPropagation(). To simply prevent the event from bubbling to ancestor elements but allow other event handlers to execute on the
same element, we can use event.stopPropagation() instead.

Use event.isImmediatePropagationStopped() to know whether this method was ever called (on that event object).

Example 1: Prevents other event handlers from being called.

CSS

p { height: 30px; width: 150px; background-color: #ccf; }
div {height: 30px; width: 150px; background-color: #cfc; }

Javascript

$("p").click(function(event){
 event.stopImmediatePropagation();
});
$("p").click(function(event){
 // This function won't be executed
 $(this).css("background-color", "#f00");
});
$("div").click(function(event) {
 // This function will be executed
 $(this).css("background-color", "#f00");
});

HTML

<p>paragraph</p>
<div>division</div>

event.isPropagationStopped

Returns whether event.stopPropagation() was ever called on this event object.

Added in version 1.3

Added in version 1.0

Added in version 1.3

event.isPropagationStopped():Boolean

This event method is described in the W3C DOM Level 3 specification.

Example 1: Checks whether event.stopPropagation() was called

Javascript

function propStopped(e) {
 var msg = "";
 if (e.isPropagationStopped()) {
 msg = "called"
 } else {
 msg = "not called";
 }
 $("#stop-log").append("<div>" + msg + "</div>");
}

$("button").click(function(event) {
 propStopped(event);
 event.stopPropagation();
 propStopped(event);
});

HTML

 <button>click me</button>
 <div id="stop-log"></div>

event.stopPropagation

Prevents the event from bubbling up the DOM tree, preventing any parent handlers from being notified of the event.

event.stopPropagation():

We can use event.isPropagationStopped() to determine if this method was ever called (on that event object).

This method works for custom events triggered with trigger(), as well.

Note that this will not prevent other handlers on the same element from running.

Example 1: Kill the bubbling on the click event.

Javascript

$("p").click(function(event){
 event.stopPropagation();
 // do something
});

event.isDefaultPrevented

Returns whether event.preventDefault() was ever called on this event object.

event.isDefaultPrevented():Boolean

Example 1: Checks whether event.preventDefault() was called.

Javascript

$("a").click(function(event){
 alert(event.isDefaultPrevented()); // false
 event.preventDefault();
 alert(event.isDefaultPrevented()); // true
});

event.preventDefault

Added in version 1.0

Added in version 1.2.6

Added in version 1.3

If this method is called, the default action of the event will not be triggered.

event.preventDefault():undefined

For example, clicked anchors will not take the browser to a new URL. We can use event.isDefaultPrevented() to determine if this method has
been called by an event handler that was triggered by this event.

Example 1: Cancel the default action (navigation) of the click.

Javascript

$("a").click(function(event) {
 event.preventDefault();
 $('<div/>')
 .append('default ' + event.type + ' prevented')
 .appendTo('#log');
});

HTML

default click action is prevented
<div id="log"></div>

event.timeStamp

The difference in milliseconds between the time an event is triggered and January 1, 1970.

This property can be useful for profiling the performance of certain jQuery functions by getting the event.timeStamp value at two points in the
code and noting the difference.

Example 1: Display the time since the click handler last executed.

CSS

div { height: 100px; width: 300px; margin: 10px;
 background-color: #ffd; overflow: auto; }

Javascript

var last, diff;
$('div').click(function(event) {
 if (last) {
 diff = event.timeStamp - last
 $('div').append('time since last event: ' + diff + '
');
 } else {
 $('div').append('Click again.
');
 }
 last = event.timeStamp;
});

HTML

<div>Click.</div>

event.result

The last value returned by an event handler that was triggered by this event, unless the value was undefined.

This property can be useful for getting previous return values of custom events.

Example 1: Display previous handler's return value

Added in version 1.1.3

Added in version 1.0.4

Added in version 1.0.4

Javascript

$("button").click(function(event) {
 return "hey";
});
$("button").click(function(event) {
 $("p").html(event.result);
});

HTML

<button>display event.result</button>
<p></p>

event.which

For key or button events, this attribute indicates the specific button or key that was pressed.

event.which normalizes event.keyCode and event.charCode. It is recommended to watch event.which for keyboard key input. For more detail,
read about event.charCode on the MDC.

Example 1: Log what key was depressed.

Javascript

$('#whichkey').bind('keydown',function(e){
 $('#log').html(e.type + ': ' + e.which);
});

HTML

<input id="whichkey" value="type something">
<div id="log"></div>

Results

"keydown" 74

event.pageY

The mouse position relative to the top edge of the document.

Example 1: Show the mouse position relative to the left and top edges of the document (within this iframe).

CSS

body {background-color: #eef; }
div { padding: 20px; }

HTML

<div id="log"></div>

Javascript

$(document).bind('mousemove',function(e){
 $("#log").text("e.pageX: " + e.pageX + ", e.pageY: " + e.pageY);
});

event.pageX

The mouse position relative to the left edge of the document.

Added in version 1.3

Added in version 1.1.4

Added in version 1.1

Example 1: Show the mouse position relative to the left and top edges of the document (within the iframe).

CSS

body {background-color: #eef; }
div { padding: 20px; }

HTML

<div id="log"></div>

Javascript

$(document).bind('mousemove',function(e){
 $("#log").text("e.pageX: " + e.pageX + ", e.pageY: " + e.pageY);
});

event.currentTarget

The current DOM element within the event bubbling phase.

This property will typically be equal to the this of the function.

If you are using jQuery.proxy or another form of scope manipulation, this will be equal to whatever context you have provided, not
event.currentTarget

Example 1: Alert that currentTarget matches the `this` keyword.

Javascript

$("p").click(function(event) {
 alert(event.currentTarget === this); // true
});

event.relatedTarget

The other DOM element involved in the event, if any.

For mouseout, indicates the element being entered; for mouseover, indicates the element being exited.

Example 1: On mouseout of anchors, alert the element type being entered.

Javascript

$("a").mouseout(function(event) {
 alert(event.relatedTarget.nodeName); // "DIV"
});

event.data

The optional data passed to jQuery.fn.bind when the current executing handler was bound.

Example 1: The description of the example.

Javascript

$("a").each(function(i) {
 $(this).bind('click', {index:i}, function(e){
 alert('my index is ' + e.data.index);
 });
});

event.target

The DOM element that initiated the event.

Added in version 1.0

Added in version 1.0

The target property can be the element that registered for the event or a descendant of it. It is often useful to compare event.target to this in
order to determine if the event is being handled due to event bubbling. This property is very useful in event delegation, when events bubble.

Example 1: Display the tag's name on click

Javascript

$("body").click(function(event) {
 $("#log").html("clicked: " + event.target.nodeName);
});

CSS

span, strong, p {
 padding: 8px; display: block; border: 1px solid #999; }

HTML

<div id="log"></div>
<div>
 <p>
 click
 </p>
</div>

Example 2: Implements a simple event delegation: The click handler is added to an unordered list, and the children of its li children are hidden.
Clicking one of the li children toggles (see toggle()) their children.

Javascript

function handler(event) {
 var $target = $(event.target);
 if($target.is("li")) {
 $target.children().toggle();
 }
}
$("ul").click(handler).find("ul").hide();

HTML

 item 1

 sub item 1-a
 sub item 1-b

 item 2

 sub item 2-a
 sub item 2-b

event.type

Describes the nature of the event.

Example 1: On all anchor clicks, alert the event type.

Javascript

$("a").click(function(event) {
 alert(event.type); // "click"
});

keydown

Added in version 1.0

Bind an event handler to the "keydown" JavaScript event, or trigger that event on an element.

keydown():jQuery

This method is a shortcut for .bind('keydown', handler) in the first and second variations, and .trigger('keydown') in the third.

The keydown event is sent to an element when the user first presses a key on the keyboard. It can be attached to any element, but the event is
only sent to the element that has the focus. Focusable elements can vary between browsers, but form elements can always get focus so are
reasonable candidates for this event type.

For example, consider the HTML:

<form>
 <input id="target" type="text" value="Hello there" />
</form>
<div id="other">
 Trigger the handler
</div>

The event handler can be bound to the input field:

$('#target').keydown(function() {
 alert('Handler for .keydown() called.');
});

Now when the insertion point is inside the field, pressing a key displays the alert:

Handler for .keydown() called.

To trigger the event manually, apply .keydown() without an argument:

$('#other').click(function() {
 $('#target').keydown();
});

After this code executes, clicks on Trigger the handler will also alert the message.

If key presses anywhere need to be caught (for example, to implement global shortcut keys on a page), it is useful to attach this behavior to the
document object. Because of event bubbling, all key presses will make their way up the DOM to the document object unless explicitly stopped.

To determine which key was pressed, examine the event object that is passed to the handler function. While browsers use differing properties to
store this information, jQuery normalizes the .which property so you can reliably use it to retrieve the key code. This code corresponds to a key
on the keyboard, including codes for special keys such as arrows. For catching actual text entry, .keypress() may be a better choice.

Example 1: Show the event object for the keydown handler when a key is pressed in the input.

Javascript

var xTriggered = 0;
$('#target').keydown(function(event) {
 if (event.keyCode == '13') {
 event.preventDefault();
 }
 xTriggered++;
 var msg = 'Handler for .keydown() called ' + xTriggered + ' time(s).';
 $.print(msg, 'html');
 $.print(event);
});

$('#other').click(function() {
 $('#target').keydown();
});

Added in version 1.0

CSS

fieldset { margin-bottom: 1em; }
input { display: block; margin-bottom: .25em; }
#print-output {
 width: 100%;
}
.print-output-line {
 white-space: pre;
 padding: 5px;
 font-family: monaco, monospace;
 font-size: .7em;
}

HTML

<form>
 <fieldset>
 <label for="target">Type Something:</label>
 <input id="target" type="text" />
 </fieldset>
</form>
<button id="other">
 Trigger the handler
</button>
<script type="text/javascript" src="/scripts/events.js"></script>

scroll

Bind an event handler to the "scroll" JavaScript event, or trigger that event on an element.

scroll():jQuery

This method is a shortcut for .bind('scroll', handler) in the first and second variations, and .trigger('scroll') in the third.

The scroll event is sent to an element when the user scrolls to a different place in the element. It applies to window objects, but also to
scrollable frames and elements with the overflow CSS property set to scroll (or auto when the element's explicit height or width is less than
the height or width of its contents).

For example, consider the HTML:

<div id="target" style="overflow: scroll; width: 200px; height: 100px;">
 Lorem ipsum dolor sit amet, consectetur adipisicing elit,
 sed do eiusmod tempor incididunt ut labore et dolore magna
 aliqua. Ut enim ad minim veniam, quis nostrud exercitation
 ullamco laboris nisi ut aliquip ex ea commodo consequat.
 Duis aute irure dolor in reprehenderit in voluptate velit
 esse cillum dolore eu fugiat nulla pariatur. Excepteur
 sint occaecat cupidatat non proident, sunt in culpa qui
 officia deserunt mollit anim id est laborum.
</div>
<div id="other">
 Trigger the handler
</div>
<div id="log"></div>

The style definition is present to make the target element small enough to be scrollable:

The scroll event handler can be bound to this element:

$('#target').scroll(function() {

Added in version 1.0

 $('#log').append('<div>Handler for .scroll() called.</div>');
});

Now when the user scrolls the text up or down, one or more messages are appended to <div id="log"></div>:

Handler for .scroll() called.

To trigger the event manually, apply .scroll() without an argument:

$('#other').click(function() {
 $('#target').scroll();
});

After this code executes, clicks on Trigger the handler will also append the message.

A scroll event is sent whenever the element's scroll position changes, regardless of the cause. A mouse click or drag on the scroll bar, dragging
inside the element, pressing the arrow keys, or using the mouse's scroll wheel could cause this event.

Example 1: To do something when your page is scrolled:

Javascript

 $("p").clone().appendTo(document.body);
 $("p").clone().appendTo(document.body);
 $("p").clone().appendTo(document.body);
 $(window).scroll(function () {
 $("span").css("display", "inline").fadeOut("slow");
 });

CSS

 div { color:blue; }
 p { color:green; }
 span { color:red; display:none; }

HTML

<div>Try scrolling the iframe.</div>
 <p>Paragraph - Scroll happened!</p>

resize

Bind an event handler to the "resize" JavaScript event, or trigger that event on an element.

resize():jQuery

This method is a shortcut for .bind('resize', handler) in the first and second variations, and .trigger('resize') in the third.

The resize event is sent to the window element when the size of the browser window changes:

$(window).resize(function() {
 $('#log').append('<div>Handler for .resize() called.</div>');
});

Now whenever the browser window's size is changed, the message is appended to <div id="log"> one or more times, depending on the browser.

Code in a resize handler should never rely on the number of times the handler is called. Depending on implementation, resize events can be
sent continuously as the resizing is in progress (the typical behavior in Internet Explorer and WebKit-based browsers such as Safari and
Chrome), or only once at the end of the resize operation (the typical behavior in some other browsers such as Opera).

Example 1: To see the window width while (or after) it is resized, try:

Javascript

$(window).resize(function() {
 $('body').prepend('<div>' + $(window).width() + '</div>');
});

keyup

Added in version 1.0

Bind an event handler to the "keyup" JavaScript event, or trigger that event on an element.

keyup():jQuery

This method is a shortcut for .bind('keyup', handler) in the first two variations, and .trigger('keyup') in the third.

The keyup event is sent to an element when the user releases a key on the keyboard. It can be attached to any element, but the event is only sent
to the element that has the focus. Focusable elements can vary between browsers, but form elements can always get focus so are reasonable
candidates for this event type.

For example, consider the HTML:

<form>
 <input id="target" type="text" value="Hello there" />
</form>
<div id="other">
 Trigger the handler
</div>

The event handler can be bound to the input field:

$('#target').keyup(function() {
 alert('Handler for .keyup() called.');
});

Now when the insertion point is inside the field and a key is pressed and released, the alert is displayed:

Handler for .keyup() called.

To trigger the event manually, apply .keyup() without arguments:

$('#other').click(function() {
 $('#target').keyup();
});

After this code executes, clicks on Trigger the handler will also alert the message.

If key presses anywhere need to be caught (for example, to implement global shortcut keys on a page), it is useful to attach this behavior to the
document object. Because of event bubbling, all key presses will make their way up the DOM to the document object unless explicitly stopped.

To determine which key was pressed, examine the event object that is passed to the handler function. While browsers use differing properties to
store this information, jQuery normalizes the .which property so you can reliably use it to retrieve the key code. This code corresponds to a key
on the keyboard, including codes for special keys such as arrows. For catching actual text entry, .keypress() may be a better choice.

Example 1: Show the event object for the keyup handler when a key is released in the input.

Javascript

var xTriggered = 0;
$('#target').keyup(function(event) {
 if (event.keyCode == '13') {
 event.preventDefault();
 }
 xTriggered++;
 var msg = 'Handler for .keyup() called ' + xTriggered + ' time(s).';
 $.print(msg, 'html');
 $.print(event);
});

$('#other').click(function() {
 $('#target').keyup();
});

Added in version 1.0

CSS

fieldset { margin-bottom: 1em; }
input { display: block; margin-bottom: .25em; }
#print-output {
 width: 100%;
}
.print-output-line {
 white-space: pre;
 padding: 5px;
 font-family: monaco, monospace;
 font-size: .7em;
}

HTML

<form>
 <fieldset>
 <label for="target">Type Something:</label>
 <input id="target" type="text" />
 </fieldset>
</form>
<button id="other">
 Trigger the handler
</button>
<script type="text/javascript" src="/scripts/events.js"></script>

keypress

Bind an event handler to the "keypress" JavaScript event, or trigger that event on an element.

keypress():jQuery

Note: as the keypress event isn't covered by any official specification, the actual behavior encountered when using it may differ across
browsers, browser versions, and platforms.

This method is a shortcut for .bind("keypress", handler) in the first two variations, and .trigger("keypress") in the third.

The keypress event is sent to an element when the browser registers keyboard input. This is similar to the keydown event, except in the case of
key repeats. If the user presses and holds a key, a keydown event is triggered once, but separate keypress events are triggered for each inserted
character. In addition, modifier keys (such as Shift) trigger keydown events but not keypress events.

A keypress event handler can be attached to any element, but the event is only sent to the element that has the focus. Focusable elements can
vary between browsers, but form elements can always get focus so are reasonable candidates for this event type.

For example, consider the HTML:

<form>
 <fieldset>
 <input id="target" type="text" value="Hello there" />
 </fieldset>
</form>
<div id="other">
 Trigger the handler
</div>

The event handler can be bound to the input field:

$("#target").keypress(function() {
 alert("Handler for .keypress() called.");
});

Now when the insertion point is inside the field, pressing a key displays the alert:

Handler for .keypress() called.

The message repeats if the key is held down. To trigger the event manually, apply .keypress() without an argument::

$('#other').click(function() {
 $("#target").keypress();
});

After this code executes, clicks on Trigger the handler will also alert the message.

Added in version 1.0

If key presses anywhere need to be caught (for example, to implement global shortcut keys on a page), it is useful to attach this behavior to the
document object. Because of event bubbling, all key presses will make their way up the DOM to the document object unless explicitly stopped.

To determine which character was entered, examine the event object that is passed to the handler function. While browsers use differing
properties to store this information, jQuery normalizes the .which property so you can reliably use it to retrieve the character code.

Note that keydown and keyup provide a code indicating which key is pressed, while keypress indicates which character was entered. For
example, a lowercase "a" will be reported as 65 by keydown and keyup, but as 97 by keypress. An uppercase "A" is reported as 65 by all events.
Because of this distinction, when catching special keystrokes such as arrow keys, .keydown() or .keyup() is a better choice.

Example 1: Show the event object when a key is pressed in the input. Note: This demo relies on a simple $.print() plugin (http://api.jquery.com
/scripts/events.js) for the event object's output.

Javascript

var xTriggered = 0;
$("#target").keypress(function(event) {
 if (event.which == 13) {
 event.preventDefault();
 }
 xTriggered++;
 var msg = "Handler for .keypress() called " + xTriggered + " time(s).";
 $.print(msg, "html");
 $.print(event);
});

$("#other").click(function() {
 $("#target").keypress();
});

CSS

fieldset { margin-bottom: 1em; }
input { display: block; margin-bottom: .25em; }
#print-output {
 width: 100%;
}
.print-output-line {
 white-space: pre;
 padding: 5px;
 font-family: monaco, monospace;
 font-size: .7em;
}

HTML

<form>
 <fieldset>
 <label for="target">Type Something:</label>
 <input id="target" type="text" />
 </fieldset>
</form>
<button id="other">
 Trigger the handler
</button>
<script src="http://api.jquery.com/scripts/events.js"></script>

submit: see Forms

select: see Forms

change: see Forms

blur: see Forms

focus: see Forms

mousemove

Bind an event handler to the "mousemove" JavaScript event, or trigger that event on an element.

mousemove():jQuery

This method is a shortcut for .bind('mousemove', handler) in the first two variations, and .trigger('mousemove') in the third.

The mousemove event is sent to an element when the mouse pointer moves inside the element. Any HTML element can receive this event.

For example, consider the HTML:

<div id="target">
 Move here
</div>
<div id="other">
 Trigger the handler
</div>
<div id="log"></div>

The event handler can be bound to the target:

$("#target").mousemove(function(event) {
 var msg = "Handler for .mousemove() called at ";
 msg += event.pageX + ", " + event.pageY;
 $("#log").append("<div>" + msg + "</div>");
});

Now when the mouse pointer moves within the target button, the messages are appended to <div id="log">:

Handler for .mousemove() called at (399, 48)

Handler for .mousemove() called at (398, 46)

Handler for .mousemove() called at (397, 44)

Handler for .mousemove() called at (396, 42)

To trigger the event manually, apply .mousemove() without an argument:

$("#other").click(function() {
 $("#target").mousemove();
});

After this code executes, clicks on the Trigger button will also append the message:

Handler for .mousemove() called at (undefined, undefined)

When tracking mouse movement, you usually need to know the actual position of the mouse pointer. The event object that is passed to the
handler contains some information about the mouse coordinates. Properties such as .clientX, .offsetX, and .pageX are available, but support
for them differs between browsers. Fortunately, jQuery normalizes the .pageX and .pageY properties so that they can be used in all browsers.
These properties provide the X and Y coordinates of the mouse pointer relative to the top-left corner of the document, as illustrated in the
example output above.

Keep in mind that the mousemove event is triggered whenever the mouse pointer moves, even for a pixel. This means that hundreds of events can
be generated over a very small amount of time. If the handler has to do any significant processing, or if multiple handlers for the event exist,
this can be a serious performance drain on the browser. It is important, therefore, to optimize mousemove handlers as much as possible, and to
unbind them as soon as they are no longer needed.

A common pattern is to bind the mousemove handler from within a mousedown hander, and to unbind it from a corresponding mouseup handler. If
implementing this sequence of events, remember that the mouseup event might be sent to a different HTML element than the mousemove event
was. To account for this, the mouseup handler should typically be bound to an element high up in the DOM tree, such as <body>.

Example 1: Show the mouse coordinates when the mouse is moved over the yellow div. Coordinates are relative to the window, which in this
case is the iframe.

Javascript

 $("div").mousemove(function(e){
 var pageCoords = "(" + e.pageX + ", " + e.pageY + ")";
 var clientCoords = "(" + e.clientX + ", " + e.clientY + ")";
 $("span:first").text("(e.pageX, e.pageY) - " + pageCoords);
 $("span:last").text("(e.clientX, e.clientY) - " + clientCoords);
 });

Added in version 1.0

CSS

 div { width:220px; height:170px; margin;10px; margin-right:50px;
 background:yellow; border:2px groove; float:right; }
 p { margin:0; margin-left:10px; color:red; width:220px;
 height:120px; padding-top:70px;
 float:left; font-size:14px; }
 span { display:block; }

HTML

<p>
 Try scrolling too.
 Move the mouse over the div.

 </p>

 <div></div>

hover

Bind two handlers to the matched elements, to be executed when the mouse pointer enters and leaves the elements.

hover(handlerIn(eventObject), handlerOut(eventObject)):jQuery

handlerIn(eventObject):Function A function to execute when the mouse pointer enters the element.
handlerOut(eventObject):Function A function to execute when the mouse pointer leaves the element.

The .hover() method binds handlers for both mouseenter and mouseleave events. You can use it to simply apply behavior to an element during
the time the mouse is within the element.

Calling $(selector).hover(handlerIn, handlerOut) is shorthand for:

$(selector).mouseenter(handlerIn).mouseleave(handlerOut);

See the discussions for .mouseenter() and .mouseleave() for more details.

Example 1: To add a special style to list items that are being hovered over, try:

Javascript

$("li").hover(
 function () {
 $(this).append($(" ***"));
 },
 function () {
 $(this).find("span:last").remove();
 }
);

//li with fade class
$("li.fade").hover(function(){$(this).fadeOut(100);$(this).fadeIn(500);});

CSS

 ul { margin-left:20px; color:blue; }
 li { cursor:default; }
 span { color:red; }

HTML

 Milk
 Bread
 <li class='fade'>Chips

 <li class='fade'>Socks

Added in version 1.4

Example 2: To add a special style to table cells that are being hovered over, try:

Javascript

$("td").hover(
 function () {
 $(this).addClass("hover");
 },
 function () {
 $(this).removeClass("hover");
 }
);

Example 3: To unbind the above example use:

Javascript

$("td").unbind('mouseenter mouseleave');

hover

Bind a single handler to the matched elements, to be executed when the mouse pointer enters or leaves the elements.

hover(handlerInOut(eventObject)):jQuery

handlerInOut(eventObject):Function A function to execute when the mouse pointer enters or leaves the element.

The .hover() method, when passed a single function, will execute that handler for both mouseenter and mouseleave events. This allows the user
to use jQuery's various toggle methods within the handler or to respond differently within the handler depending on the event.type.

Calling $(selector).hover(handlerInOut) is shorthand for:

$(selector).bind("mouseenter mouseleave", handlerInOut);

See the discussions for .mouseenter() and .mouseleave() for more details.

Example 1: Slide the next sibling LI up or down on hover, and toggle a class.

Javascript

$("li")
.filter(":odd")
.hide()
 .end()
.filter(":even")
.hover(
 function () {
 $(this).toggleClass("active")
 .next().stop(true, true).slideToggle();
 }
);

CSS

 ul { margin-left:20px; color:blue; }
 li { cursor:default; }
 li.active { background:black;color:white; }
 span { color:red; }

HTML

 Milk
 White
 Carrots
 Orange
 Broccoli
 Green

Added in version 1.0

mouseleave

Bind an event handler to be fired when the mouse leaves an element, or trigger that handler on an element.

mouseleave():jQuery

This method is a shortcut for .bind('mouseleave', handler) in the first two variations, and .trigger('mouseleave') in the third.

The mouseleave JavaScript event is proprietary to Internet Explorer. Because of the event's general utility, jQuery simulates this event so that it
can be used regardless of browser. This event is sent to an element when the mouse pointer leaves the element. Any HTML element can receive
this event.

For example, consider the HTML:

<div id="outer">
 Outer
 <div id="inner">
 Inner
 </div>
</div>
<div id="other">
 Trigger the handler
</div>
<div id="log"></div>

The event handler can be bound to any element:

$('#outer').mouseleave(function() {
 $('#log').append('<div>Handler for .mouseleave() called.</div>');
});

Now when the mouse pointer moves out of the Outer <div>, the message is appended to <div id="log">. You can also trigger the event when
another element is clicked:

$('#other').click(function() {
 $('#outer').mouseleave();
});

After this code executes, clicks on Trigger the handler will also append the message.

The mouseleave event differs from mouseout in the way it handles event bubbling. If mouseout were used in this example, then when the mouse
pointer moved out of the Inner element, the handler would be triggered. This is usually undesirable behavior. The mouseleave event, on the
other hand, only triggers its handler when the mouse leaves the element it is bound to, not a descendant. So in this example, the handler is
triggered when the mouse leaves the Outer element, but not the Inner element.

Example 1: Show number of times mouseout and mouseleave events are triggered. mouseout fires when the pointer moves out of child element as
well, while mouseleave fires only when the pointer moves out of the bound element.

Added in version 1.0

CSS

div.out {
width:40%;
height:120px;
margin:0 15px;
background-color:#D6EDFC;
float:left;
}
div.in {
width:60%;
height:60%;
background-color:#FFCC00;
margin:10px auto;
}
p {
line-height:1em;
margin:0;
padding:0;
}

Javascript

 var i = 0;
 $("div.overout").mouseover(function(){
 $("p:first",this).text("mouse over");
 }).mouseout(function(){
 $("p:first",this).text("mouse out");
 $("p:last",this).text(++i);
 });

 var n = 0;
 $("div.enterleave").mouseenter(function(){
 $("p:first",this).text("mouse enter");
 }).mouseleave(function(){
 $("p:first",this).text("mouse leave");
 $("p:last",this).text(++n);
 });

HTML

<div class="out overout"><p>move your mouse</p><div class="in overout"><p>move your mouse</p><p>0</p></div><p>0</p></div>

<div class="out enterleave"><p>move your mouse</p><div class="in enterleave"><p>move your mouse</p><p>0</p></div><p>0</p></div>

mouseenter

Bind an event handler to be fired when the mouse enters an element, or trigger that handler on an element.

mouseenter():jQuery

This method is a shortcut for .bind('mouseenter', handler) in the first two variations, and .trigger('mouseenter') in the third.

The mouseenter JavaScript event is proprietary to Internet Explorer. Because of the event's general utility, jQuery simulates this event so that it
can be used regardless of browser. This event is sent to an element when the mouse pointer enters the element. Any HTML element can receive
this event.

For example, consider the HTML:

<div id="outer">
 Outer
 <div id="inner">
 Inner
 </div>
</div>
<div id="other">
 Trigger the handler
</div>
<div id="log"></div>

The event handler can be bound to any element:

$('#outer').mouseenter(function() {
 $('#log').append('<div>Handler for .mouseenter() called.</div>');
});

Now when the mouse pointer moves over the Outer <div>, the message is appended to <div id="log">. You can also trigger the event when
another element is clicked:

$('#other').click(function() {
 $('#outer').mouseenter();
});

After this code executes, clicks on Trigger the handler will also append the message.

The mouseenter event differs from mouseover in the way it handles event bubbling. If mouseover were used in this example, then when the
mouse pointer moved over the Inner element, the handler would be triggered. This is usually undesirable behavior. The mouseenter event, on
the other hand, only triggers its handler when the mouse enters the element it is bound to, not a descendant. So in this example, the handler is
triggered when the mouse enters the Outer element, but not the Inner element.

Example 1: Show texts when mouseenter and mouseout event triggering. mouseover fires when the pointer moves into the child element as well,
while mouseenter fires only when the pointer moves into the bound element.

CSS

div.out {
width:40%;
height:120px;
margin:0 15px;
background-color:#D6EDFC;
float:left;
}
div.in {
width:60%;
height:60%;
background-color:#FFCC00;
margin:10px auto;
}
p {
line-height:1em;
margin:0;
padding:0;
}

Javascript

 var i = 0;
 $("div.overout").mouseover(function(){
 $("p:first",this).text("mouse over");
 $("p:last",this).text(++i);
 }).mouseout(function(){
 $("p:first",this).text("mouse out");
 });

 var n = 0;
 $("div.enterleave").mouseenter(function(){
 $("p:first",this).text("mouse enter");
 $("p:last",this).text(++n);
 }).mouseleave(function(){
 $("p:first",this).text("mouse leave");
 });

Added in version 1.0

HTML

<div class="out overout"><p>move your mouse</p><div class="in overout"><p>move your mouse</p><p>0</p></div><p>0</p></div>

<div class="out enterleave"><p>move your mouse</p><div class="in enterleave"><p>move your mouse</p><p>0</p></div><p>0</p></div>

mouseout

Bind an event handler to the "mouseout" JavaScript event, or trigger that event on an element.

mouseout():jQuery

This method is a shortcut for .bind('mouseout', handler) in the first two variation, and .trigger('mouseout') in the third.

The mouseout event is sent to an element when the mouse pointer leaves the element. Any HTML element can receive this event.

For example, consider the HTML:

<div id="outer">
 Outer
 <div id="inner">
 Inner
 </div>
</div>
<div id="other">
 Trigger the handler
</div>
<div id="log"></div>

The event handler can be bound to any element:

$('#outer').mouseout(function() {
 $('#log').append('Handler for .mouseout() called.');
});

Now when the mouse pointer moves out of the Outer <div>, the message is appended to <div id="log">. To trigger the event manually, apply
.mouseout() without an argument::

$('#other').click(function() {
 $('#outer').mouseout();
});

After this code executes, clicks on Trigger the handler will also append the message.

This event type can cause many headaches due to event bubbling. For instance, when the mouse pointer moves out of the Inner element in this
example, a mouseout event will be sent to that, then trickle up to Outer. This can trigger the bound mouseout handler at inopportune times. See
the discussion for .mouseleave() for a useful alternative.

Example 1: Show the number of times mouseout and mouseleave events are triggered. mouseout fires when the pointer moves out of the child
element as well, while mouseleave fires only when the pointer moves out of the bound element.

Added in version 1.0

CSS

div.out {
width:40%;
height:120px;
margin:0 15px;
background-color:#D6EDFC;
float:left;
}
div.in {
width:60%;
height:60%;
background-color:#FFCC00;
margin:10px auto;
}
p {
line-height:1em;
margin:0;
padding:0;
}

Javascript

 var i = 0;
 $("div.overout").mouseout(function(){
 $("p:first",this).text("mouse out");
 $("p:last",this).text(++i);
 }).mouseover(function(){
 $("p:first",this).text("mouse over");
 });

 var n = 0;
 $("div.enterleave").bind("mouseenter",function(){
 $("p:first",this).text("mouse enter");
 }).bind("mouseleave",function(){
 $("p:first",this).text("mouse leave");
 $("p:last",this).text(++n);
 });

HTML

<div class="out overout"><p>move your mouse</p><div class="in overout"><p>move your mouse</p><p>0</p></div><p>0</p></div>

<div class="out enterleave"><p>move your mouse</p><div class="in enterleave"><p>move your mouse</p><p>0</p></div><p>0</p></div>

mouseover

Bind an event handler to the "mouseover" JavaScript event, or trigger that event on an element.

mouseover():jQuery

This method is a shortcut for .bind('mouseover', handler) in the first two variations, and .trigger('mouseover') in the third.

The mouseover event is sent to an element when the mouse pointer enters the element. Any HTML element can receive this event.

For example, consider the HTML:

<div id="outer">
 Outer
 <div id="inner">
 Inner
 </div>
</div>
<div id="other">
 Trigger the handler
</div>
<div id="log"></div>

The event handler can be bound to any element:

$('#outer').mouseover(function() {
 $('#log').append('<div>Handler for .mouseover() called.</div>');
});

Now when the mouse pointer moves over the Outer <div>, the message is appended to <div id="log">. We can also trigger the event when
another element is clicked:

$('#other').click(function() {
 $('#outer').mouseover();
});

After this code executes, clicks on Trigger the handler will also append the message.

This event type can cause many headaches due to event bubbling. For instance, when the mouse pointer moves over the Inner element in this
example, a mouseover event will be sent to that, then trickle up to Outer. This can trigger our bound mouseover handler at inopportune times. See
the discussion for .mouseenter() for a useful alternative.

Example 1: Show the number of times mouseover and mouseenter events are triggered. mouseover fires when the pointer moves into the child
element as well, while mouseenter fires only when the pointer moves into the bound element.

CSS

div.out { width:40%; height:120px; margin:0 15px;
 background-color:#D6EDFC; float:left; }
div.in { width:60%; height:60%;
 background-color:#FFCC00; margin:10px auto; }
p { line-height:1em; margin:0; padding:0; }

Javascript

 var i = 0;
 $("div.overout").mouseover(function() {
 i += 1;
 $(this).find("span").text("mouse over x " + i);
 }).mouseout(function(){
 $(this).find("span").text("mouse out ");
 });

 var n = 0;
 $("div.enterleave").mouseenter(function() {
 n += 1;
 $(this).find("span").text("mouse enter x " + n);
 }).mouseleave(function() {
 $(this).find("span").text("mouse leave");
 });

HTML

<div class="out overout">
 move your mouse
 <div class="in">
 </div>
</div>

<div class="out enterleave">
 move your mouse
 <div class="in">
 </div>
</div>

dblclick

Added in version 1.0

Bind an event handler to the "dblclick" JavaScript event, or trigger that event on an element.

dblclick():jQuery

This method is a shortcut for .bind('dblclick', handler) in the first two variations, and .trigger('dblclick') in the third. The dblclick
event is sent to an element when the element is double-clicked. Any HTML element can receive this event. For example, consider the HTML:

<div id="target">
 Double-click here
</div>
<div id="other">
 Trigger the handler
</div>

The event handler can be bound to any <div>:

$('#target').dblclick(function() {
 alert('Handler for .dblclick() called.');
});

Now double-clicking on this element displays the alert:

Handler for .dblclick() called.

To trigger the event manually, apply .dblclick() without an argument:

$('#other').click(function() {
 $('#target').dblclick();
});

After this code executes, (single) clicks on Trigger the handler will also alert the message.

The dblclick event is only triggered after this exact series of events:

The mouse button is depressed while the pointer is inside the element.
The mouse button is released while the pointer is inside the element.
The mouse button is depressed again while the pointer is inside the element, within a time window that is system-dependent.
The mouse button is released while the pointer is inside the element.

It is inadvisable to bind handlers to both the click and dblclick events for the same element. The sequence of events triggered varies from
browser to browser, with some receiving two click events before the dblclick and others only one. Double-click sensitivity (maximum time
between clicks that is detected as a double click) can vary by operating system and browser, and is often user-configurable.

Example 1: To bind a "Hello World!" alert box the dblclick event on every paragraph on the page:

Javascript

$("p").dblclick(function () { alert("Hello World!"); });

Example 2: Double click to toggle background color.

Javascript

 var divdbl = $("div:first");
 divdbl.dblclick(function () {
 divdbl.toggleClass('dbl');
 });

Added in version 1.0

CSS

 div { background:blue;
 color:white;
 height:100px;
 width:150px;
 }
 div.dbl { background:yellow;color:black; }

HTML

<div></div>Double click the block

click

Bind an event handler to the "click" JavaScript event, or trigger that event on an element.

click():jQuery

This method is a shortcut for .bind('click', handler) in the first two variations, and .trigger('click') in the third.

The click event is sent to an element when the mouse pointer is over the element, and the mouse button is pressed and released. Any HTML
element can receive this event.

For example, consider the HTML:
<div id="target">
 Click here
</div>
<div id="other">
 Trigger the handler
</div>

The event handler can be bound to any <div>:

$('#target').click(function() {
 alert('Handler for .click() called.');
});

Now if we click on this element, the alert is displayed:

Handler for .click() called.

We can also trigger the event when a different element is clicked:

$('#other').click(function() {
 $('#target').click();
});

After this code executes, clicks on Trigger the handler will also alert the message.

The click event is only triggered after this exact series of events:

The mouse button is depressed while the pointer is inside the element.
The mouse button is released while the pointer is inside the element.

This is usually the desired sequence before taking an action. If this is not required, the mousedown or mouseup event may be more suitable.

Example 1: To hide paragraphs on a page when they are clicked:

Added in version 1.0

Javascript

 $("p").click(function () {
 $(this).slideUp();
 });
 $("p").hover(function () {
 $(this).addClass("hilite");
 }, function () {
 $(this).removeClass("hilite");
 });

CSS

 p { color:red; margin:5px; cursor:pointer; }
 p.hilite { background:yellow; }

HTML

<p>First Paragraph</p>

 <p>Second Paragraph</p>
 <p>Yet one more Paragraph</p>

Example 2: To trigger the click event on all of the paragraphs on the page:

Javascript

$("p").click();

mouseup

Bind an event handler to the "mouseup" JavaScript event, or trigger that event on an element.

mouseup():jQuery

This method is a shortcut for .bind('mouseup', handler) in the first variation, and .trigger('mouseup') in the second.

The mouseup event is sent to an element when the mouse pointer is over the element, and the mouse button is released. Any HTML element can
receive this event.

For example, consider the HTML:

<div id="target">
 Click here
</div>
<div id="other">
 Trigger the handler
</div>

The event handler can be bound to any <div>:

$('#target').mouseup(function() {
 alert('Handler for .mouseup() called.');
});

Now if we click on this element, the alert is displayed:

Handler for .mouseup() called.

We can also trigger the event when a different element is clicked:

$('#other').click(function() {
 $('#target').mouseup();
});

Added in version 1.0

After this code executes, clicks on Trigger the handler will also alert the message.

If the user clicks outside an element, drags onto it, and releases the button, this is still counted as a mouseup event. This sequence of actions is
not treated as a button press in most user interfaces, so it is usually better to use the click event unless we know that the mouseup event is
preferable for a particular situation.

Example 1: Show texts when mouseup and mousedown event triggering.

Javascript

 $("p").mouseup(function(){
 $(this).append('Mouse up.');
 }).mousedown(function(){
 $(this).append('Mouse down.');
 });

HTML

<p>Press mouse and release here.</p>

mousedown

Bind an event handler to the "mousedown" JavaScript event, or trigger that event on an element.

mousedown():jQuery

This method is a shortcut for .bind('mousedown', handler) in the first variation, and .trigger('mousedown') in the second.

The mousedown event is sent to an element when the mouse pointer is over the element, and the mouse button is pressed. Any HTML element
can receive this event.

For example, consider the HTML:

<div id="target">
 Click here
</div>
<div id="other">
 Trigger the handler
</div>

The event handler can be bound to any <div>:

$('#target').mousedown(function() {
 alert('Handler for .mousedown() called.');
});

Now if we click on this element, the alert is displayed:

Handler for .mousedown() called.

We can also trigger the event when a different element is clicked:

$('#other').click(function() {
 $('#target').mousedown();
});

After this code executes, clicks on Trigger the handler will also alert the message.

The mousedown event is sent when any mouse button is clicked. To act only on specific buttons, we can use the event object's which property.
Not all browsers support this property (Internet Explorer uses button instead), but jQuery normalizes the property so that it is safe to use in any
browser. The value of which will be 1 for the left button, 2 for the middle button, or 3 for the right button.

This event is primarily useful for ensuring that the primary button was used to begin a drag operation; if ignored, strange results can occur when
the user attempts to use a context menu. While the middle and right buttons can be detected with these properties, this is not reliable. In Opera

Added in version 1.4.3

and Safari, for example, right mouse button clicks are not detectable by default.

If the user clicks on an element, drags away from it, and releases the button, this is still counted as a mousedown event. This sequence of actions
is treated as a "canceling" of the button press in most user interfaces, so it is usually better to use the click event unless we know that the
mousedown event is preferable for a particular situation.

Example 1: Show texts when mouseup and mousedown event triggering.

Javascript

 $("p").mouseup(function(){
 $(this).append('Mouse up.');
 }).mousedown(function(){
 $(this).append('Mouse down.');
 });

HTML

<p>Press mouse and release here.</p>

error

Bind an event handler to the "error" JavaScript event.

error(eventData, handler(eventObject)):jQuery

eventData:Object (optional) A map of data that will be passed to the event handler.
handler(eventObject):Function A function to execute each time the event is triggered.

This method is a shortcut for .bind('error', handler).

The error event is sent to elements, such as images, that are referenced by a document and loaded by the browser. It is called if the element was
not loaded correctly.

For example, consider a page with a simple image element:

The event handler can be bound to the image:

$('#book')
 .error(function() {
 alert('Handler for .error() called.')
 })
 .attr("src", "missing.png");

If the image cannot be loaded (for example, because it is not present at the supplied URL), the alert is displayed:

Handler for .error() called.

The event handler must be attached before the browser fires the error event, which is why the example sets the src attribute after
attaching the handler. Also, the error event may not be correctly fired when the page is served locally; error relies on HTTP status
codes and will generally not be triggered if the URL uses the file: protocol.

Note: A jQuery error event handler should not be attached to the window object. The browser fires the window's error event when a script error
occurs. However, the window error event receives different arguments and has different return value requirements than conventional event
handlers. Use window.onerror instead.

Example 1: To hide the "broken image" icons for IE users, you can try:

Javascript

$("img")
 .error(function(){
 $(this).hide();
 })
 .attr("src", "missing.png");

unload

Bind an event handler to the "unload" JavaScript event.

Added in version 1.4.3

Added in version 1.4.3

unload(eventData, handler(eventObject)):jQuery

eventData:Object (optional) A map of data that will be passed to the event handler.
handler(eventObject):Function A function to execute each time the event is triggered.

This method is a shortcut for .bind('unload', handler).

The unload event is sent to the window element when the user navigates away from the page. This could mean one of many things. The user
could have clicked on a link to leave the page, or typed in a new URL in the address bar. The forward and back buttons will trigger the event.
Closing the browser window will cause the event to be triggered. Even a page reload will first create an unload event.

The exact handling of the unload event has varied from version to version of browsers. For example, some versions of Firefox
trigger the event when a link is followed, but not when the window is closed. In practical usage, behavior should be tested on all
supported browsers, and contrasted with the proprietary beforeunload event.

Any unload event handler should be bound to the window object:

$(window).unload(function() {
 alert('Handler for .unload() called.');
});

After this code executes, the alert will be displayed whenever the browser leaves the current page. It is not possible to cancel the unload event
with .preventDefault(). This event is available so that scripts can perform cleanup when the user leaves the page.

Example 1: To display an alert when a page is unloaded:

Javascript

$(window).unload(function () { alert("Bye now!"); });

load

Bind an event handler to the "load" JavaScript event.

load(eventData, handler(eventObject)):jQuery

eventData:Object (optional) A map of data that will be passed to the event handler.
handler(eventObject):Function A function to execute each time the event is triggered.

This method is a shortcut for .bind('load', handler).

The load event is sent to an element when it and all sub-elements have been completely loaded. This event can be sent to any element
associated with a URL: images, scripts, frames, iframes, and the window object.

For example, consider a page with a simple image:

The event handler can be bound to the image:

$('#book').load(function() {
 // Handler for .load() called.
});

As soon as the image has been loaded, the handler is called.

In general, it is not necessary to wait for all images to be fully loaded. If code can be executed earlier, it is usually best to place it in a handler
sent to the .ready() method.

The Ajax module also has a method named .load(). Which one is fired depends on the set of arguments passed.

Caveats of the load event when used with images

A common challenge developers attempt to solve using the .load() shortcut is to execute a function when an image (or collection
of images) have completely loaded. There are several known caveats with this that should be noted. These are:

It doesn't work consistently nor reliably cross-browser
It doesn't fire correctly in WebKit if the image src is set to the same src as before
It doesn't correctly bubble up the DOM tree
Can cease to fire for images that already live in the browser's cache

Note: The .live() and .delegate() methods cannot be used to detect the load event of an iframe. The load event does not

Added in version 1.0

correctly bubble up the parent document and the event.target isn't set by Firefox, IE9 or Chrome, which is required to do event
delegation.

Note: When calling .load() using a URL without a suffixed selector expression, the content is passed to .html() prior to scripts
being removed. This executes the script blocks before they are discarded. If .load() is however called with a selector expression
appended to the URL, the scripts are stripped out prior to the DOM being updated, which is why they are never executed. An
example of both cases can be seen below:

Here, any JavaScript loaded into #a as a part of the document will successfully execute.

$('#a').load('article.html');

However in this case, script blocks in the document being loaded into #b are stripped out prior to being executed:

$('#b').load('article.html #target');

Example 1: Run a function when the page is fully loaded including graphics.

Javascript

$(window).load(function () {
 // run code
});

Example 2: Add the class bigImg to all images with height greater then 100 upon each image load.

Javascript

$('img.userIcon').load(function(){
 if($(this).height() > 100) {
 $(this).addClass('bigImg');
 }
});

ready

Specify a function to execute when the DOM is fully loaded.

ready(handler):jQuery

handler:Function A function to execute after the DOM is ready.

While JavaScript provides the load event for executing code when a page is rendered, this event does not get triggered until all assets such as
images have been completely received. In most cases, the script can be run as soon as the DOM hierarchy has been fully constructed. The
handler passed to .ready() is guaranteed to be executed after the DOM is ready, so this is usually the best place to attach all other event
handlers and run other jQuery code. When using scripts that rely on the value of CSS style properties, it's important to reference external
stylesheets or embed style elements before referencing the scripts.

In cases where code relies on loaded assets (for example, if the dimensions of an image are required), the code should be placed in a handler for
the load event instead.

The .ready() method is generally incompatible with the <body onload=""> attribute. If load must be used, either do not use
.ready() or use jQuery's .load() method to attach load event handlers to the window or to more specific items, like images.

All three of the following syntaxes are equivalent:

$(document).ready(handler)

$().ready(handler) (this is not recommended)
$(handler)

There is also $(document).bind("ready", handler). This behaves similarly to the ready method but with one exception: If the ready event has
already fired and you try to .bind("ready") the bound handler will not be executed. Ready handlers bound this way are executed after any
bound by the other three methods above.

The .ready() method can only be called on a jQuery object matching the current document, so the selector can be omitted.

The .ready() method is typically used with an anonymous function:

$(document).ready(function() {
 // Handler for .ready() called.
});

Added in version 1.4.1

Added in version 1.4.3

Which is equivalent to calling:

$(function() {
 // Handler for .ready() called.
});

If .ready() is called after the DOM has been initialized, the new handler passed in will be executed immediately.

Aliasing the jQuery Namespace

When using another JavaScript library, we may wish to call $.noConflict() to avoid namespace difficulties. When this function is called, the $
shortcut is no longer available, forcing us to write jQuery each time we would normally write $. However, the handler passed to the .ready()
method can take an argument, which is passed the global jQuery object. This means we can rename the object within the context of our
.ready() handler without affecting other code:

jQuery(document).ready(function($) {
 // Code using $ as usual goes here.
});

Example 1: Display a message when the DOM is loaded.

Javascript

$(document).ready(function () {
 $("p").text("The DOM is now loaded and can be manipulated.");
});

CSS

p { color:red; }

HTML

<p>Not loaded yet.</p>

die

Remove all event handlers previously attached using .live() from the elements.

die():jQuery

Any handler that has been attached with .live() can be removed with .die(). This method is analogous to calling .unbind() with no
arguments, which is used to remove all handlers attached with .bind(). See the discussions of .live() and .unbind() for further details.

Note: In order for .die() to function correctly, the selector used with it must match exactly the selector initially used with .live().

die

Remove an event handler previously attached using .live() from the elements.

die(eventTypes):jQuery

eventTypes:Map A map of one or more event types, such as click or keydown and their corresponding functions
that are no longer to be executed.

Any handler that has been attached with .live() can be removed with .die(). This method is analogous to .unbind(), which is used to remove
handlers attached with .bind(). See the discussions of .live() and .unbind() for further details.

Note: In order for .die() to function correctly, the selector used with it must match exactly the selector initially used with .live().

Example 1: Can bind and unbind events to the colored button.

Added in version 1.4.3

Javascript

function aClick() {
 $("div").show().fadeOut("slow");
}
$("#bind").click(function () {
 $("#theone").live("click", aClick)
 .text("Can Click!");
});
$("#unbind").click(function () {
 $("#theone").die("click", aClick)
 .text("Does nothing...");
});

CSS

button { margin:5px; }
button#theone { color:red; background:yellow; }

HTML

<button id="theone">Does nothing...</button>
<button id="bind">Bind Click</button>
<button id="unbind">Unbind Click</button>

<div style="display:none;">Click!</div>

Example 2: To unbind all live events from all paragraphs, write:

Javascript

$("p").die()

Example 3: To unbind all live click events from all paragraphs, write:

Javascript

$("p").die("click")

Example 4: To unbind just one previously bound handler, pass the function in as the second argument:

Javascript

var foo = function () {
// code to handle some kind of event
};

$("p").live("click", foo); // ... now foo will be called when paragraphs are clicked ...

$("p").die("click", foo); // ... foo will no longer be called.

live

Attach a handler to the event for all elements which match the current selector, now and in the future.

live(events):jQuery

events:Object A map of one or more JavaScript event types and functions to execute for them.

This method is a variation on the basic .bind() method for attaching event handlers to elements. When .bind() is called, the elements that the
jQuery object refers to get the handler attached; elements that get introduced later do not, so they would require another .bind() call. For
instance, consider the HTML:

<body>
 <div class="clickme">
 Click here
 </div>
</body>

To bind a simple click handler to this element:

$('.clickme').bind('click', function() {
 // Bound handler called.
});

When the element is clicked, the handler is called. However, suppose that after this, another element is added:

$('body').append('<div class="clickme">Another target</div>');

This new element also matches the selector .clickme, but since it was added after the call to .bind(), clicks on it will do nothing.

The .live() method provides an alternative to this behavior. To bind a click handler to the target element using this method:

$('.clickme').live('click', function() {
 // Live handler called.
});

And then later add a new element:

$('body').append('<div class="clickme">Another target</div>');

Then clicks on the new element will also trigger the handler.

To unbind the click handlers from all <div class="clickme"> that were bound using .live(), use the .die() method:

$(".clickme").die("click");

Event Delegation

The .live() method is able to affect elements that have not yet been added to the DOM through the use of event delegation: a handler bound to
an ancestor element is responsible for events that are triggered on its descendants. The handler passed to .live() is never bound to an element;
instead, .live() binds a special handler to the root of the DOM tree. In the example above, when the new element is clicked, the following
steps occur:

A click event is generated and passed to the <div> for handling.1.
No handler is directly bound to the <div>, so the event bubbles up the DOM tree.2.
The event bubbles up until it reaches the root of the tree, which is where .live() binds its special handlers by default.

* As of jQuery 1.4, event bubbling can optionally stop at a DOM element "context".

3.

The special click handler bound by .live() executes.4.
This handler tests the target of the event object to see whether it should continue. This test is performed by checking if
$(event.target).closest(".clickme") is able to locate a matching element.

5.

If a matching element is found, the original handler is called on it.6.

Because the test in step 5 is not performed until the event occurs, elements can be added at any time and still respond to events.

See the discussion for .bind() for more information on event binding.

Multiple Events

As of jQuery 1.4.1 .live() can accept multiple, space-separated events, similar to the functionality provided in .bind(). For example, you can
"live bind" the mouseover and mouseout events at the same time like so:

$(".hoverme").live("mouseover mouseout", function(event) {
 if (event.type == "mouseover") {
 // do something on mouseover
 } else {
 // do something on mouseout
 }
});

As of jQuery 1.4.3, you can bind multiple live event handlers simultaneously by passing a map of event type/handler pairs:

$("a").live({
 click: function() {
 // do something on click
 },
 mouseover: function() {
 // do something on mouseover
 }
});

Event Data

As of jQuery 1.4, the optional eventData parameter is available for passing additional information to the handler. One handy use of this
parameter is to work around issues caused by closures. See the .bind() method's "Passing Event Data" discussion for more information.

Event Context

As of jQuery 1.4, live events can be bound to a DOM element "context" rather than to the default document root. To set this context, use the
jQuery() function's second argument, passing in a single DOM element (as opposed to a jQuery collection or a selector).

$("div.clickme", $("#container")[0]).live("click", function() {
 // Live handler called.
});

The live handler in this example is called only when <div class="clickme"> is a descendant of an element with an ID of "container."

Caveats

The .live() technique is useful, but due to its special approach cannot be simply substituted for .bind() in all cases. Specific differences
include:

DOM traversal methods are not supported for finding elements to send to .live(). Rather, the .live() method should always be called
directly after a selector, as in the example above.
To stop further handlers from executing after one bound using .live(), the handler must return false. Calling .stopPropagation() will
not accomplish this.
The paste and reset events, in addition to change when used with inputs of type "file," are not fully supported by the .live() method,
due to issues with simulating event bubbling in Internet Explorer. In these cases, the .bind() method can be used instead.
In jQuery 1.3.x only the following JavaScript events (in addition to custom events) could be bound with .live(): click, dblclick,
keydown, keypress, keyup, mousedown, mousemove, mouseout, mouseover, and mouseup.

As of jQuery 1.4 the .live() method supports custom events as well as all JavaScript events that bubble.
As of jQuery 1.4.1 even focus and blur work with live (mapping to the more appropriate, bubbling, events focusin and
focusout).
As of jQuery 1.4.1 the hover event can be specified (mapping to mouseenter and mouseleave, which, in turn, are mapped to
mouseover and mouseout).

Example 1: Click a paragraph to add another. Note that .live() binds the click event to all paragraphs - even new ones.

Javascript

$("p").live("click", function(){
 $(this).after("<p>Another paragraph!</p>");
});

CSS

 p { background:yellow; font-weight:bold; cursor:pointer;
 padding:5px; }
 p.over { background: #ccc; }
 span { color:red; }

HTML

<p>Click me!</p>

Example 2: Cancel a default action and prevent it from bubbling up by returning false.

Javascript

$("a").live("click", function() { return false; })

Example 3: Cancel only the default action by using the preventDefault method.

Javascript

$("a").live("click", function(event){
 event.preventDefault();
});

Added in version 1.2

Example 4: Bind custom events with .live().

Javascript

$("p").live("myCustomEvent", function(e, myName, myValue) {
 $(this).text("Hi there!");
 $("span").stop().css("opacity", 1)
 .text("myName = " + myName)
 .fadeIn(30).fadeOut(1000);
});
$("button").click(function () {
 $("p").trigger("myCustomEvent");
});

CSS

 p { color:red; }
 span { color:blue; }

HTML

 <p>Has an attached custom event.</p>
 <button>Trigger custom event</button>

Example 5: Use a map to bind multiple live event handlers. Note that .live() binds the click, mouseover, and mouseout events to all paragraphs
â€” even new ones.

Javascript

$("p").live({
 click: function() {
 $(this).after("<p>Another paragraph!</p>");
 },
 mouseover: function() {
 $(this).addClass("over");
 },
 mouseout: function() {
 $(this).removeClass("over");
 }
});

CSS

 p { background:yellow; font-weight:bold; cursor:pointer; padding:5px; }
 p.over { background: #ccc; }
 span { color:red; }

HTML

 <p>Click me!</p>

triggerHandler

Execute all handlers attached to an element for an event.

triggerHandler(eventType, extraParameters):Object

eventType:String A string containing a JavaScript event type, such as click or submit.
extraParameters:Array An array of additional parameters to pass along to the event handler.

The .triggerHandler() method behaves similarly to .trigger(), with the following exceptions:

The .triggerHandler() method does not cause the default behavior of an event to occur (such as a form submission).
While .trigger() will operate on all elements matched by the jQuery object, .triggerHandler() only affects the first matched element.
Events created with .triggerHandler() do not bubble up the DOM hierarchy; if they are not handled by the target element directly, they
do nothing.

Added in version 1.3

Instead of returning the jQuery object (to allow chaining), .triggerHandler() returns whatever value was returned by the last handler it
caused to be executed. If no handlers are triggered, it returns undefined

For more information on this method, see the discussion for .trigger().

Example 1: If you called .triggerHandler() on a focus event - the browser's default focus action would not be triggered, only the event handlers
bound to the focus event.

Javascript

$("#old").click(function(){
$("input").trigger("focus");
});
$("#new").click(function(){
$("input").triggerHandler("focus");
});
$("input").focus(function(){
$("Focused!").appendTo("body").fadeOut(1000);
});

HTML

<button id="old">.trigger("focus")</button>
<button id="new">.triggerHandler("focus")</button>

<input type="text" value="To Be Focused"/>

trigger

Execute all handlers and behaviors attached to the matched elements for the given event type.

trigger(event):jQuery

event:Event A jQuery.Event object.

Any event handlers attached with .bind() or one of its shortcut methods are triggered when the corresponding event occurs. They can be fired
manually, however, with the .trigger() method. A call to .trigger() executes the handlers in the same order they would be if the event were
triggered naturally by the user:

$('#foo').bind('click', function() {
 alert($(this).text());
 });
 $('#foo').trigger('click');

As of jQuery 1.3, .trigger()ed events bubble up the DOM tree; an event handler can stop the bubbling by returning false from the handler or
calling the .stopPropagation() method on the event object passed into the event. Although .trigger() simulates an event activation, complete
with a synthesized event object, it does not perfectly replicate a naturally-occurring event.

To trigger handlers bound via jQuery without also triggering the native event, use .triggerHandler() instead.

When we define a custom event type using the .bind() method, the second argument to .trigger() can become useful. For example, suppose
we have bound a handler for the custom event to our element instead of the built-in click event as we did above:

$('#foo').bind('custom', function(event, param1, param2) {
 alert(param1 + "\n" + param2);
});
$('#foo').trigger('custom', ['Custom', 'Event']);

The event object is always passed as the first parameter to an event handler, but if additional parameters are specified during a .trigger() call,
these parameters will be passed along to the handler as well. To pass more than one parameter, use an array as shown here. As of jQuery 1.6.2,
a single parameter can be passed without using an array.

Note the difference between the extra parameters we're passing here and the eventData parameter to the .bind() method. Both are mechanisms
for passing information to an event handler, but the extraParameters argument to .trigger() allows information to be determined at the time
the event is triggered, while the eventData argument to .bind() requires the information to be already computed at the time the handler is
bound.

Example 1: Clicks to button #2 also trigger a click for button #1.

Javascript

$("button:first").click(function () {
update($("span:first"));
});
$("button:last").click(function () {
$("button:first").trigger('click');

update($("span:last"));
});

function update(j) {
var n = parseInt(j.text(), 10);
j.text(n + 1);
}

CSS

button { margin:10px; }
div { color:blue; font-weight:bold; }
span { color:red; }

HTML

<button>Button #1</button>
<button>Button #2</button>
<div>0 button #1 clicks.</div>

<div>0 button #2 clicks.</div>

Example 2: To submit the first form without using the submit() function, try:

Javascript

$("form:first").trigger("submit")

Example 3: To submit the first form without using the submit() function, try:

Javascript

var event = jQuery.Event("submit");
$("form:first").trigger(event);
if (event.isDefaultPrevented()) {
// Perform an action...
}

Example 4: To pass arbitrary data to an event:

Javascript

$("p").click(function (event, a, b) {
// when a normal click fires, a and b are undefined
// for a trigger like below a refers to "foo" and b refers to "bar"

}).trigger("click", ["foo", "bar"]);

Example 5: To pass arbitrary data through an event object:

Javascript

var event = jQuery.Event("logged");
event.user = "foo";
event.pass = "bar";
$("body").trigger(event);

Example 6: Alternative way to pass data through an event object:

Added in version 1.1

Javascript

$("body").trigger({
type:"logged",
user:"foo",
pass:"bar"

});

one

Attach a handler to an event for the elements. The handler is executed at most once per element.

one(eventType, eventData, handler(eventObject)):jQuery

eventType:String A string containing one or more JavaScript event types, such as "click" or "submit," or custom
event names.

eventData:Object (optional) A map of data that will be passed to the event handler.
handler(eventObject):Function A function to execute at the time the event is triggered.

This method is identical to .bind(), except that the handler is unbound after its first invocation. For example:

$("#foo").one("click", function() {
 alert("This will be displayed only once.");
});

After the code is executed, a click on the element with ID foo will display the alert. Subsequent clicks will do nothing. This code is equivalent
to:

$("#foo").bind("click", function(event) {
 alert("This will be displayed only once.");
 $(this).unbind(event);
});

In other words, explicitly calling .unbind() from within a regularly-bound handler has exactly the same effect.

If the first argument contains more than one space-separated event types, the event handler is called once for each event type.

Example 1: Tie a one-time click to each div.

Javascript

var n = 0;
$("div").one("click", function() {
 var index = $("div").index(this);
 $(this).css({
 borderStyle:"inset",
 cursor:"auto"
 });
 $("p").text("Div at index #" + index + " clicked." +
 " That's " + ++n + " total clicks.");
});

CSS

div { width:60px; height:60px; margin:5px; float:left;
background:green; border:10px outset;
cursor:pointer; }
p { color:red; margin:0; clear:left; }

HTML

<div></div>
<div></div>
<div></div>
<div></div>
<div></div>

<p>Click a green square...</p>

Example 2: To display the text of all paragraphs in an alert box the first time each of them is clicked:

Added in version 1.0

Javascript

$("p").one("click", function(){
alert($(this).text());
});

unbind

Remove a previously-attached event handler from the elements.

unbind(event):jQuery

event:Object A JavaScript event object as passed to an event handler.

Any handler that has been attached with .bind() can be removed with .unbind(). In the simplest case, with no arguments, .unbind() removes
all handlers attached to the elements:

$('#foo').unbind();

This version removes the handlers regardless of type. To be more precise, we can pass an event type:

$('#foo').unbind('click');

By specifying the click event type, only handlers for that event type will be unbound. This approach can still have negative ramifications if
other scripts might be attaching behaviors to the same element, however. Robust and extensible applications typically demand the
two-argument version for this reason:

var handler = function() {
 alert('The quick brown fox jumps over the lazy dog.');
};
$('#foo').bind('click', handler);
$('#foo').unbind('click', handler);

By naming the handler, we can be assured that no other functions are caught in the crossfire. Note that the following will not work:

$('#foo').bind('click', function() {
 alert('The quick brown fox jumps over the lazy dog.');
});

// will NOT work
$('#foo').unbind('click', function() {
 alert('The quick brown fox jumps over the lazy dog.');
});

Even though the two functions are identical in content, they are created separately and so JavaScript is free to keep them as distinct function
objects. To unbind a particular handler, we need a reference to that function and not a different one that happens to do the same thing.

Note: Because the .live() method binds event handlers to document by default, calling .unbind() on document will unbind the
handlers bound by .live(), as well. For example, $(document).unbind('click'); will remove not only
$(document).bind('click', fn1)

but also

$('a.foo').live('click', fn2).

Note: Using a proxied function to unbind an event on an element will unbind all proxied functions on that element, as the same
proxy function is used for all proxied events. To allow unbinding a specific event, use unique class names on the event (e.g.
click.proxy1, click.proxy2) when attaching them.

Using Namespaces

Instead of maintaining references to handlers in order to unbind them, we can namespace the events and use this capability to narrow the scope
of our unbinding actions. As shown in the discussion for the .bind() method, namespaces are defined by using a period (.) character when
binding a handler:

$('#foo').bind('click.myEvents', handler);

When a handler is bound in this fashion, we can still unbind it the normal way:

$('#foo').unbind('click');

However, if we want to avoid affecting other handlers, we can be more specific:

$('#foo').unbind('click.myEvents');

We can also unbind all of the handlers in a namespace, regardless of event type:

$('#foo').unbind('.myEvents');

It is particularly useful to attach namespaces to event bindings when we are developing plug-ins or otherwise writing code that may interact
with other event-handling code in the future.

Using the Event Object

The third form of the .unbind() method is used when we wish to unbind a handler from within itself. For example, suppose we wish to trigger
an event handler only three times:

var timesClicked = 0;
$('#foo').bind('click', function(event) {
 alert('The quick brown fox jumps over the lazy dog.');
 timesClicked++;
 if (timesClicked >= 3) {
 $(this).unbind(event);
 }
});

The handler in this case must take a parameter, so that we can capture the event object and use it to unbind the handler after the third click. The
event object contains the context necessary for .unbind() to know which handler to remove. This example is also an illustration of a closure.
Since the handler refers to the timesClicked variable, which is defined outside the function, incrementing the variable has an effect even
between invocations of the handler.

Example 1: Can bind and unbind events to the colored button.

Javascript

function aClick() {
$("div").show().fadeOut("slow");
}
$("#bind").click(function () {
// could use .bind('click', aClick) instead but for variety...
$("#theone").click(aClick)
 .text("Can Click!");
});
$("#unbind").click(function () {
$("#theone").unbind('click', aClick)
 .text("Does nothing...");
});

CSS

button { margin:5px; }
button#theone { color:red; background:yellow; }

HTML

<button id="theone">Does nothing...</button>
<button id="bind">Bind Click</button>
<button id="unbind">Unbind Click</button>

<div style="display:none;">Click!</div>

Example 2: To unbind all events from all paragraphs, write:

Javascript

$("p").unbind()

Example 3: To unbind all click events from all paragraphs, write:

Javascript

$("p").unbind("click")

Added in version 1.4

Example 4: To unbind just one previously bound handler, pass the function in as the second argument:

Javascript

var foo = function () {
// code to handle some kind of event
};

$("p").bind("click", foo); // ... now foo will be called when paragraphs are clicked ...

$("p").unbind("click", foo); // ... foo will no longer be called.

bind

Attach a handler to an event for the elements.

bind(events):jQuery

events:Object A map of one or more JavaScript event types and functions to execute for them.

The .bind() method is the primary means of attaching behavior to a document. All JavaScript event types, such as focus, mouseover, and
resize, are allowed for eventType. The error event on the window object uses nonstandard conventions and is not supported by jQuery; attach a
handler directly to the window object instead. The beforeunload event is supported cross-browser in jQuery 1.5.1 and 1.6+, but is not supported
in IE for jQuery 1.5.2 due to a regression.

The jQuery library provides shortcut methods for binding the standard event types, such as .click() for .bind('click'). A description of each
can be found in the discussion of its shortcut method: blur, focus, focusin, focusout, load, resize, scroll, unload, click, dblclick, mousedown,
mouseup, mousemove, mouseover, mouseout, mouseenter, mouseleave, change, select, submit, keydown, keypress, keyup, error

Any string is legal for eventType; if the string is not the name of a native JavaScript event, then the handler is bound to a custom event. These
events are never called by the browser, but may be triggered manually from other JavaScript code using .trigger() or .triggerHandler().

If the eventType string contains a period (.) character, then the event is namespaced. The period character separates the event from its
namespace. For example, in the call .bind('click.name', handler), the string click is the event type, and the string name is the namespace.
Namespacing allows us to unbind or trigger some events of a type without affecting others. See the discussion of .unbind() for more
information.

When an event reaches an element, all handlers bound to that event type for the element are fired. If there are multiple handlers registered, they
will always execute in the order in which they were bound. After all handlers have executed, the event continues along the normal event
propagation path.

A basic usage of .bind() is:

$('#foo').bind('click', function() {
 alert('User clicked on "foo."');
});

This code will cause the element with an ID of foo to respond to the click event. When a user clicks inside this element thereafter, the alert will
be shown.

Multiple Events

Multiple event types can be bound at once by including each one separated by a space:

$('#foo').bind('mouseenter mouseleave', function() {
 $(this).toggleClass('entered');
});

The effect of this on <div id="foo"> (when it does not initially have the "entered" class) is to add the "entered" class when the mouse enters the
<div> and remove the class when the mouse leaves.

As of jQuery 1.4 we can bind multiple event handlers simultaneously by passing a map of event type/handler pairs:

$('#foo').bind({
 click: function() {
 // do something on click
 },
 mouseenter: function() {
 // do something on mouseenter
 }
});

Event Handlers

The handler parameter takes a callback function, as shown above. Within the handler, the keyword this refers to the DOM element to which
the handler is bound. To make use of the element in jQuery, it can be passed to the normal $() function. For example:

$('#foo').bind('click', function() {
 alert($(this).text());
});

After this code is executed, when the user clicks inside the element with an ID of foo, its text contents will be shown as an alert.

As of jQuery 1.4.2 duplicate event handlers can be bound to an element instead of being discarded. For example:

function test(){ alert("Hello"); }
$("button").click(test);
$("button").click(test);

The above will generate two alerts when the button is clicked.

In jQuery 1.4.3 you can now pass in 'false' in place of an event handler. This will bind an event handler that's equivalent to: function(){ return
false; }. This function can be removed at a later time by calling: .unbind(eventName, false).

The Event object

The handler callback function can also take parameters. When the function is called, the JavaScript event object will be passed to the first
parameter.

The event object is often unnecessary and the parameter omitted, as sufficient context is usually available when the handler is bound to know
exactly what needs to be done when the handler is triggered. However, at times it becomes necessary to gather more information about the
user's environment at the time the event was initiated. View the full Event Object.

Returning false from a handler is equivalent to calling both .preventDefault() and .stopPropagation() on the event object.

Using the event object in a handler looks like this:

$(document).ready(function() {
 $('#foo').bind('click', function(event) {
 alert('The mouse cursor is at ('
 + event.pageX + ', ' + event.pageY + ')');
 });
});

Note the parameter added to the anonymous function. This code will cause a click on the element with ID foo to report the page coordinates of
the mouse cursor at the time of the click.

Passing Event Data

The optional eventData parameter is not commonly used. When provided, this argument allows us to pass additional information to the handler.
One handy use of this parameter is to work around issues caused by closures. For example, suppose we have two event handlers that both refer
to the same external variable:

var message = 'Spoon!';
$('#foo').bind('click', function() {
 alert(message);
});
message = 'Not in the face!';
$('#bar').bind('click', function() {
 alert(message);
});

Because the handlers are closures that both have message in their environment, both will display the message Not in the face! when triggered.
The variable's value has changed. To sidestep this, we can pass the message in using eventData:

var message = 'Spoon!';
$('#foo').bind('click', {msg: message}, function(event) {
 alert(event.data.msg);
});
message = 'Not in the face!';
$('#bar').bind('click', {msg: message}, function(event) {
 alert(event.data.msg);
});

This time the variable is not referred to directly within the handlers; instead, the variable is passed in by value through eventData, which fixes
the value at the time the event is bound. The first handler will now display Spoon! while the second will alert Not in the face!

Note that objects are passed to functions by reference, which further complicates this scenario.

If eventData is present, it is the second argument to the .bind() method; if no additional data needs to be sent to the handler, then the callback
is passed as the second and final argument.

See the .trigger() method reference for a way to pass data to a handler at the time the event happens rather than when the handler
is bound.

As of jQuery 1.4 we can no longer attach data (and thus, events) to object, embed, or applet elements because critical errors occur when
attaching data to Java applets.

Note: Although demonstrated in the next example, it is inadvisable to bind handlers to both the click and dblclick events for the same element.
The sequence of events triggered varies from browser to browser, with some receiving two click events before the dblclick and others only
one. Double-click sensitivity (maximum time between clicks that is detected as a double click) can vary by operating system and browser, and
is often user-configurable.

Example 1: Handle click and double-click for the paragraph. Note: the coordinates are window relative, so in this case relative to the demo
iframe.

Javascript

$("p").bind("click", function(event){
var str = "(" + event.pageX + ", " + event.pageY + ")";
$("span").text("Click happened! " + str);
});
$("p").bind("dblclick", function(){
$("span").text("Double-click happened in " + this.nodeName);
});
$("p").bind("mouseenter mouseleave", function(event){
$(this).toggleClass("over");
});

CSS

p { background:yellow; font-weight:bold; cursor:pointer;
padding:5px; }
p.over { background: #ccc; }
span { color:red; }

HTML

<p>Click or double click here.</p>

Example 2: To display each paragraph's text in an alert box whenever it is clicked:

Javascript

$("p").bind("click", function(){
alert($(this).text());
});

Example 3: You can pass some extra data before the event handler:

Javascript

function handler(event) {
alert(event.data.foo);
}
$("p").bind("click", {foo: "bar"}, handler)

Example 4: Cancel a default action and prevent it from bubbling up by returning false:

Javascript

$("form").bind("submit", function() { return false; })

Example 5: Cancel only the default action by using the .preventDefault() method.

Javascript

$("form").bind("submit", function(event) {
event.preventDefault();
});

Example 6: Stop an event from bubbling without preventing the default action by using the .stopPropagation() method.

Javascript

$("form").bind("submit", function(event) {
 event.stopPropagation();
});

Example 7: Bind custom events.

Javascript

$("p").bind("myCustomEvent", function(e, myName, myValue){
$(this).text(myName + ", hi there!");
$("span").stop().css("opacity", 1)
.text("myName = " + myName)
.fadeIn(30).fadeOut(1000);
});
$("button").click(function () {
$("p").trigger("myCustomEvent", ["John"]);
});

CSS

p { color:red; }
span { color:blue; }

HTML

<p>Has an attached custom event.</p>
<button>Trigger custom event</button>

Example 8: Bind multiple events simultaneously.

Javascript

$("div.test").bind({
 click: function(){
 $(this).addClass("active");
 },
 mouseenter: function(){
 $(this).addClass("inside");
 },
 mouseleave: function(){
 $(this).removeClass("inside");
 }
});

Added in version 1.6

Added in version 1.6

Deferred Object

deferred.pipe

Utility method to filter and/or chain Deferreds.

deferred.pipe(doneFilter, failFilter):Promise

doneFilter:Function (optional) An optional function that is called when the Deferred is resolved.
failFilter:Function (optional) An optional function that is called when the Deferred is rejected.

The deferred.pipe() method returns a new promise that filters the status and values of a deferred through a function. The doneFilter and
failFilter functions filter the original deferred's resolved / rejected status and values. These filter functions can return a new value to be
passed along to the piped promise's done() or fail() callbacks, or they can return another observable object (Deferred, Promise, etc) which will
pass its resolved / rejected status and values to the piped promise's callbacks. If the filter function used is null, or not specified, the piped
promise will be resolved or rejected with the same values as the original.

Example 1: Filter resolve value:

Javascript

var defer = $.Deferred(),
 filtered = defer.pipe(function(value) {
 return value * 2;
 });

defer.resolve(5);
filtered.done(function(value) {
 alert("Value is (2*5 =) 10: " + value);
});

Example 2: Filter reject value:

Javascript

var defer = $.Deferred(),
 filtered = defer.pipe(null, function(value) {
 return value * 3;
 });

defer.reject(6);
filtered.fail(function(value) {
 alert("Value is (3*6 =) 18: " + value);
});

Example 3: Chain tasks:

Javascript

var request = $.ajax(url, { dataType: "json" }),
 chained = request.pipe(function(data) {
 return $.ajax(url2, { data: { user: data.userId } });
 });

chained.done(function(data) {
 // data retrieved from url2 as provided by the first request
});

deferred.always

Add handlers to be called when the Deferred object is either resolved or rejected.

deferred.always(alwaysCallbacks):Deferred

alwaysCallbacks:Function A function, or array of functions, that is called when the Deferred is resolved or rejected.

The argument can be either a single function or an array of functions. When the Deferred is resolved or rejected, the alwaysCallbacks are
called. Since deferred.always() returns the Deferred object, other methods of the Deferred object can be chained to this one, including
additional .always() methods. When the Deferred is resolved or rejected, callbacks are executed in the order they were added, using the
arguments provided to the resolve, reject, resolveWith or rejectWith method calls. For more information, see the documentation for Deferred

Added in version 1.6

object.

Example 1: Since the jQuery.get() method returns a jqXHR object, which is derived from a Deferred object, we can attach a callback for both
success and error using the deferred.always() method.

Javascript

$.get("test.php").always(function() {
 alert("$.get completed with success or error callback arguments");
});

promise

Return a Promise object to observe when all actions of a certain type bound to the collection, queued or not, have finished.

promise(type, target):Promise

type:String (optional) The type of queue that needs to be observed.
target:Object (optional) Object onto which the promise methods have to be attached

The .promise() method returns a dynamically generated Promise that is resolved once all actions of a certain type bound to the collection,
queued or not, have ended.

By default, type is "fx", which means the returned Promise is resolved when all animations of the selected elements have completed.

Resolve context and sole argument is the collection onto which .promise() has been called.

If target is provided, .promise() will attach the methods onto it and then return this object rather than create a new one. This can be useful to
attach the Promise behavior to an object that already exists.

Note: The returned Promise is linked to a Deferred object stored on the .data() for an element. Since the .remove() method
removes the element's data as well as the element itself, it will prevent any of the element's unresolved Promises from resolving. If
it is necessary to remove an element from the DOM before its Promise is resolved, use .detach() instead and follow with
.removeData() after resolution.

Example 1: Using .promise() on a collection with no active animation returns a resolved Promise:

Javascript

var div = $("<div />");

div.promise().done(function(arg1) {
 // will fire right away and alert "true"
 alert(this === div && arg1 === div);
});

Example 2: Resolve the returned Promise when all animations have ended (including those initiated in the animation callback or added later on):

CSS

div {
 height: 50px; width: 50px;
 float: left; margin-right: 10px;
 display: none; background-color: #090;
}

HTML

<button>Go</button>
<p>Ready...</p>
<div></div>
<div></div>
<div></div>
<div></div>

Added in version 1.5

Javascript

$("button").bind("click", function() {
 $("p").append("Started...");

 $("div").each(function(i) {
 $(this).fadeIn().fadeOut(1000 * (i+1));
 });

 $("div").promise().done(function() {
 $("p").append(" Finished! ");
 });
});

Example 3: Resolve the returned Promise using a $.when() statement (the .promise() method makes it possible to do this with jQuery
collections):

CSS

div {
 height: 50px; width: 50px;
 float: left; margin-right: 10px;
 display: none; background-color: #090;
}

HTML

<button>Go</button>
<p>Ready...</p>
<div></div>
<div></div>
<div></div>
<div></div>

Javascript

var effect = function() {
 return $("div").fadeIn(800).delay(1200).fadeOut();
};

$("button").bind("click", function() {
 $("p").append(" Started... ");

 $.when(effect()).done(function() {
 $("p").append(" Finished! ");
 });
});

deferred.promise

Return a Deferred's Promise object.

deferred.promise(target):Promise

target:Object (optional) Object onto which the promise methods have to be attached

The deferred.promise() method allows an asynchronous function to prevent other code from interfering with the progress or status of its
internal request. The Promise exposes only the Deferred methods needed to attach additional handlers or determine the state (then, done, fail,
isResolved, and isRejected), but not ones that change the state (resolve, reject, resolveWith, and rejectWith). As of jQuery 1.6, the Promise
also exposes the always and pipe Deferred methods.

If target is provided, deferred.promise() will attach the methods onto it and then return this object rather than create a new one. This can be
useful to attach the Promise behavior to an object that already exists.

If you are creating a Deferred, keep a reference to the Deferred so that it can be resolved or rejected at some point. Return only the Promise
object via deferred.promise() so other code can register callbacks or inspect the current state.

For more information, see the documentation for Deferred object.

Example 1: Create a Deferred and set two timer-based functions to either resolve or reject the Deferred after a random interval. Whichever one
fires first "wins" and will call one of the callbacks. The second timeout has no effect since the Deferred is already complete (in a resolved or

Added in version 1.5

Added in version 1.5

rejected state) from the first timeout action.

Javascript

// Create a Deferred and return its Promise
function asyncEvent(){
 var dfd = new jQuery.Deferred();
 setTimeout(function(){
 dfd.resolve("hurray");
 }, Math.floor(Math.random()*1500));
 setTimeout(function(){
 dfd.reject("sorry");
 }, Math.floor(Math.random()*1500));
 return dfd.promise();
}

// Attach a done and fail handler for the asyncEvent
$.when(asyncEvent()).then(
 function(status){
 alert(status+', things are going well');
 },
 function(status){
 alert(status+', you fail this time');
 }
);

Example 2: Use the target argument to promote an existing object to a Promise:

Javascript

// Existing object
var obj = {
 hello: function(name) {
 alert("Hello " + name);
 }
},
// Create a Deferred
defer = $.Deferred();

// Set object as a promise
defer.promise(obj);

// Resolve the deferred
defer.resolve("John");

// Use the object as a Promise
obj.done(function(name) {
 obj.hello(name); // will alert "Hello John"
}).hello("Karl"); // will alert "Hello Karl"

jQuery.when: see Core

deferred.resolveWith

Resolve a Deferred object and call any doneCallbacks with the given context and args.

deferred.resolveWith(context, args):Deferred

context:Object Context passed to the doneCallbacks as the this object.
args:Array (optional) An optional array of arguments that are passed to the doneCallbacks.

Normally, only the creator of a Deferred should call this method; you can prevent other code from changing the Deferred's state by returning a
restricted Promise object through deferred.promise().

When the Deferred is resolved, any doneCallbacks added by deferred.then or deferred.done are called. Callbacks are executed in the order
they were added. Each callback is passed the args from the .resolve(). Any doneCallbacks added after the Deferred enters the resolved state
are executed immediately when they are added, using the arguments that were passed to the .resolve() call. For more information, see the
documentation for Deferred object.

deferred.rejectWith

Reject a Deferred object and call any failCallbacks with the given context and args.

deferred.rejectWith(context, args):Deferred

Added in version 1.5

Added in version 1.5

context:Object Context passed to the failCallbacks as the this object.
args:Array (optional) An optional array of arguments that are passed to the failCallbacks.

Normally, only the creator of a Deferred should call this method; you can prevent other code from changing the Deferred's state by returning a
restricted Promise object through deferred.promise().

When the Deferred is rejected, any failCallbacks added by deferred.then or deferred.fail are called. Callbacks are executed in the order they
were added. Each callback is passed the args from the deferred.reject() call. Any failCallbacks added after the Deferred enters the rejected
state are executed immediately when they are added, using the arguments that were passed to the .reject() call. For more information, see the
documentation for Deferred object.

deferred.fail

Add handlers to be called when the Deferred object is rejected.

deferred.fail(failCallbacks, failCallbacks):Deferred

failCallbacks:Function A function, or array of functions, that are called when the Deferred is rejected.
failCallbacks:Function (optional) Optional additional functions, or arrays of functions, that are called when the

Deferred is rejected.

The deferred.fail() method accepts one or more arguments, all of which can be either a single function or an array of functions. When the
Deferred is rejected, the failCallbacks are called. Callbacks are executed in the order they were added. Since deferred.fail() returns the
deferred object, other methods of the deferred object can be chained to this one, including additional deferred.fail() methods. The
failCallbacks are executed using the arguments provided to the deferred.reject() or deferred.rejectWith() method call in the order they
were added. For more information, see the documentation for Deferred object.

Example 1: Since the jQuery.get method returns a jqXHR object, which is derived from a Deferred, you can attach a success and failure callback
using the deferred.done() and deferred.fail() methods.

Javascript

$.get("test.php")
 .done(function(){ alert("$.get succeeded"); })
 .fail(function(){ alert("$.get failed!"); });

deferred.done

Add handlers to be called when the Deferred object is resolved.

deferred.done(doneCallbacks, doneCallbacks):Deferred

doneCallbacks:Function A function, or array of functions, that are called when the Deferred is resolved.
doneCallbacks:Function (optional) Optional additional functions, or arrays of functions, that are called when the

Deferred is resolved.

The deferred.done() method accepts one or more arguments, all of which can be either a single function or an array of functions. When the
Deferred is resolved, the doneCallbacks are called. Callbacks are executed in the order they were added. Since deferred.done() returns the
deferred object, other methods of the deferred object can be chained to this one, including additional .done() methods. When the Deferred is
resolved, doneCallbacks are executed using the arguments provided to the resolve or resolveWith method call in the order they were added.
For more information, see the documentation for Deferred object.

Example 1: Since the jQuery.get method returns a jqXHR object, which is derived from a Deferred object, we can attach a success callback
using the .done() method.

Javascript

$.get("test.php").done(function() {
 alert("$.get succeeded");
});

Example 2: Resolve a Deferred object when the user clicks a button, triggering a number of callback functions:

Added in version 1.5

Added in version 1.5

Javascript

// 3 functions to call when the Deferred object is resolved
function fn1() {
 $("p").append(" 1 ");
}
function fn2() {
 $("p").append(" 2 ");
}
function fn3(n) {
 $("p").append(n + " 3 " + n);
}

// create a deferred object
var dfd = $.Deferred();

// add handlers to be called when dfd is resolved
dfd
// .done() can take any number of functions or arrays of functions
.done([fn1, fn2], fn3, [fn2, fn1])
// we can chain done methods, too
.done(function(n) {
 $("p").append(n + " we're done.");
});

// resolve the Deferred object when the button is clicked
$("button").bind("click", function() {
 dfd.resolve("and");
});

HTML

 <button>Go</button>
 <p>Ready...</p>

deferred.then

Add handlers to be called when the Deferred object is resolved or rejected.

deferred.then(doneCallbacks, failCallbacks):Deferred

doneCallbacks:Function A function, or array of functions, called when the Deferred is resolved.
failCallbacks:Function A function, or array of functions, called when the Deferred is rejected.

Both arguments can be either a single function or an array of functions. Either argument can also be null if no callback of that type is desired.
Alternatively, use .done() or .fail() to set only doneCallbacks or failCallbacks. When the Deferred is resolved, the doneCallbacks are called.
If the Deferred is instead rejected, the failCallbacks are called. Callbacks are executed in the order they were added. Since deferred.then
returns the deferred object, other methods of the deferred object can be chained to this one, including additional .then() methods. For more
information, see the documentation for Deferred object.

Example 1: Since the jQuery.get method returns a jqXHR object, which is derived from a Deferred object, we can attach handlers using the
.then method.

Javascript

$.get("test.php").then(
 function(){ alert("$.get succeeded"); },
 function(){ alert("$.get failed!"); }
);

deferred.reject

Reject a Deferred object and call any failCallbacks with the given args.

deferred.reject(args):Deferred

args:Object Optional arguments that are passed to the failCallbacks.

Normally, only the creator of a Deferred should call this method; you can prevent other code from changing the Deferred's state by returning a
restricted Promise object through deferred.promise().

When the Deferred is rejected, any failCallbacks added by deferred.then or deferred.fail are called. Callbacks are executed in the order they
were added. Each callback is passed the args from the deferred.reject() call. Any failCallbacks added after the Deferred enters the rejected

Added in version 1.5

Added in version 1.5

Added in version 1.5

state are executed immediately when they are added, using the arguments that were passed to the .reject() call. For more information, see the
documentation for Deferred object.

deferred.isRejected

Determine whether a Deferred object has been rejected.

deferred.isRejected():Boolean

Returns true if the Deferred object is in the rejected state, meaning that either deferred.reject() or deferred.rejectWith() has been called for
the object and the failCallbacks have been called (or are in the process of being called).

Note that a Deferred object can be in one of three states: unresolved, resolved, or rejected; use deferred.isResolved() to determine whether the
Deferred object is in the resolved state. These methods are primarily useful for debugging, for example to determine whether a Deferred has
already been resolved even though you are inside code that intended to reject it.

deferred.isResolved

Determine whether a Deferred object has been resolved.

deferred.isResolved():Boolean

Returns true if the Deferred object is in the resolved state, meaning that either deferred.resolve() or deferred.resolveWith() has been called
for the object and the doneCallbacks have been called (or are in the process of being called).

Note that a Deferred object can be in one of three states: unresolved, resolved, or rejected; use deferred.isRejected() to determine whether the
Deferred object is in the rejected state. These methods are primarily useful for debugging, for example to determine whether a Deferred has
already been resolved even though you are inside code that intended to reject it.

deferred.resolve

Resolve a Deferred object and call any doneCallbacks with the given args.

deferred.resolve(args):Deferred

args:Object Optional arguments that are passed to the doneCallbacks.

When the Deferred is resolved, any doneCallbacks added by deferred.then or deferred.done are called. Callbacks are executed in the order
they were added. Each callback is passed the args from the .resolve(). Any doneCallbacks added after the Deferred enters the resolved state
are executed immediately when they are added, using the arguments that were passed to the .resolve() call. For more information, see the
documentation for Deferred object.

Added in version 1.4.4

Added in version 1.4.3

Effects

fadeToggle

Display or hide the matched elements by animating their opacity.

fadeToggle(duration, easing, callback):jQuery

duration:String,Number (optional) A string or number determining how long the animation will run.
easing:String (optional) A string indicating which easing function to use for the transition.
callback:Function (optional) A function to call once the animation is complete.

The .fadeToggle() method animates the opacity of the matched elements. When called on a visible element, the element's display style
property is set to none once the opacity reaches 0, so the element no longer affects the layout of the page.

Durations are given in milliseconds; higher values indicate slower animations, not faster ones. The strings 'fast' and 'slow' can be supplied to
indicate durations of 200 and 600 milliseconds, respectively.

Easing

The string representing an easing function specifies the speed at which the animation progresses at different points within the animation. The
only easing implementations in the jQuery library are the default, called swing, and one that progresses at a constant pace, called linear. More
easing functions are available with the use of plug-ins, most notably the jQuery UI suite.

Callback Function

If supplied, the callback is fired once the animation is complete. This can be useful for stringing different animations together in sequence. The
callback is not sent any arguments, but this is set to the DOM element being animated. If multiple elements are animated, it is important to
note that the callback is executed once per matched element, not once for the animation as a whole.

As of jQuery 1.6, the .promise() method can be used in conjunction with the deferred.done() method to execute a single callback for the
animation as a whole when all matching elements have completed their animations (See the example for .promise()).

Example 1: Fades first paragraph in or out, completing the animation within 600 milliseconds and using a linear easing. Fades last paragraph in
or out for 200 milliseconds, inserting a "finished" message upon completion.

Javascript

$("button:first").click(function() {
 $("p:first").fadeToggle("slow", "linear");
});
$("button:last").click(function () {
 $("p:last").fadeToggle("fast", function () {
 $("#log").append("<div>finished</div>");
 });
});

HTML

<button>fadeToggle p1</button>
<button>fadeToggle p2</button>
<p>This paragraph has a slow, linear fade.</p>

<p>This paragraph has a fast animation.</p>
<div id="log"></div>

jQuery.fx.interval

The rate (in milliseconds) at which animations fire.

This property can be manipulated to adjust the number of frames per second at which animations will run. The default is 13 milliseconds.
Making this a lower number could make the animations run smoother in faster browsers (such as Chrome) but there may be performance and
CPU implications of doing so.

Since jQuery uses one global interval, no animation should be running or all animations should stop for the change of this property to take
effect.

Note:jQuery.fx.interval currently has no effect in browsers that support the requestAnimationFrame property, such as Google Chrome 11.
This behavior is subject to change in a future release.

Added in version 1.4

Example 1: Cause all animations to run with less frames.

Javascript

jQuery.fx.interval = 100;

$("input").click(function(){
 $("div").toggle(3000);
});

CSS

 div { width:50px; height:30px; margin:5px; float:left;
 background:green; }

HTML

<p><input type="button" value="Run"/></p>
<div></div>

delay

Set a timer to delay execution of subsequent items in the queue.

delay(duration, queueName):jQuery

duration:Integer An integer indicating the number of milliseconds to delay execution of the next item in the
queue.

queueName:String (optional) A string containing the name of the queue. Defaults to fx, the standard effects queue.

Added to jQuery in version 1.4, the .delay() method allows us to delay the execution of functions that follow it in the queue. It can be used
with the standard effects queue or with a custom queue. Only subsequent events in a queue are delayed; for example this will not delay the
no-arguments forms of .show() or .hide() which do not use the effects queue.

Durations are given in milliseconds; higher values indicate slower animations, not faster ones. The strings 'fast' and 'slow' can be supplied to
indicate durations of 200 and 600 milliseconds, respectively.

Using the standard effects queue, we can, for example, set an 800-millisecond delay between the .slideUp() and .fadeIn() of <div id="foo">:

$('#foo').slideUp(300).delay(800).fadeIn(400);

When this statement is executed, the element slides up for 300 milliseconds and then pauses for 800 milliseconds before fading in for 400
milliseconds.

The .delay() method is best for delaying between queued jQuery effects. Because it is limitedâ€”it doesn't, for example, offer a
way to cancel the delayâ€”.delay() is not a replacement for JavaScript's native setTimeout function, which may be more
appropriate for certain use cases.

Example 1: Animate the hiding and showing of two divs, delaying the first before showing it.

CSS

div { position: absolute; width: 60px; height: 60px; float: left; }
.first { background-color: #3f3; left: 0;}
.second { background-color: #33f; left: 80px;}

Javascript

 $("button").click(function() {
 $("div.first").slideUp(300).delay(800).fadeIn(400);
 $("div.second").slideUp(300).fadeIn(400);
 });

HTML

<p><button>Run</button></p>
<div class="first"></div>
<div class="second"></div>

Added in version 1.3

Added in version 1.2

jQuery.fx.off

Globally disable all animations.

When this property is set to true, all animation methods will immediately set elements to their final state when called, rather than displaying an
effect. This may be desirable for a couple reasons:

jQuery is being used on a low-resource device.
Users are encountering accessibility problems with the animations (see the article Turn Off Animation for more information).

Animations can be turned back on by setting the property to false.

Example 1: Toggle animation on and off

Javascript

var toggleFx = function() {
 $.fx.off = !$.fx.off;
};
toggleFx();

$("button").click(toggleFx)

$("input").click(function(){
 $("div").toggle("slow");
});

CSS

 div { width:50px; height:30px; margin:5px; float:left;
 background:green; }

HTML

<p><input type="button" value="Run"/> <button>Toggle fx</button></p>
<div></div>

clearQueue: see Data

dequeue: see Data

queue: see Data

queue: see Data

stop

Stop the currently-running animation on the matched elements.

stop(clearQueue, jumpToEnd):jQuery

clearQueue:Boolean (optional) A Boolean indicating whether to remove queued animation as well. Defaults to
false.

jumpToEnd:Boolean (optional) A Boolean indicating whether to complete the current animation immediately.
Defaults to false.

When .stop() is called on an element, the currently-running animation (if any) is immediately stopped. If, for instance, an element is being
hidden with .slideUp() when .stop() is called, the element will now still be displayed, but will be a fraction of its previous height. Callback
functions are not called.

If more than one animation method is called on the same element, the later animations are placed in the effects queue for the element. These
animations will not begin until the first one completes. When .stop() is called, the next animation in the queue begins immediately. If the
clearQueue parameter is provided with a value of true, then the rest of the animations in the queue are removed and never run.

If the jumpToEnd property is provided with a value of true, the current animation stops, but the element is immediately given its target values for
each CSS property. In our above .slideUp() example, the element would be immediately hidden. The callback function is then immediately
called, if provided.

Added in version 1.0

The usefulness of the .stop() method is evident when we need to animate an element on mouseenter and mouseleave:

<div id="hoverme">
 Hover me

</div>

We can create a nice fade effect without the common problem of multiple queued animations by adding .stop(true, true) to the chain:

$('#hoverme-stop-2').hover(function() {
 $(this).find('img').stop(true, true).fadeOut();
}, function() {
 $(this).find('img').stop(true, true).fadeIn();
});

Animations may be stopped globally by setting the property $.fx.off to true. When this is done, all animation methods will
immediately set elements to their final state when called, rather than displaying an effect.

Example 1: Click the Go button once to start the animation, then click the STOP button to stop it where it's currently positioned. Another option
is to click several buttons to queue them up and see that stop just kills the currently playing one.

Javascript

/* Start animation */
$("#go").click(function(){
$(".block").animate({left: '+=100px'}, 2000);
});

/* Stop animation when button is clicked */
$("#stop").click(function(){
$(".block").stop();
});

/* Start animation in the opposite direction */
$("#back").click(function(){
$(".block").animate({left: '-=100px'}, 2000);
});

HTML

<button id="go">Go</button>
<button id="stop">STOP!</button>
<button id="back">Back</button>
<div class="block"></div>

CSS

div {
position: absolute;
background-color: #abc;
left: 0px;
top:30px;
width: 60px;
height: 60px;
margin: 5px;
}

animate

Perform a custom animation of a set of CSS properties.

animate(properties, options):jQuery

properties:Map A map of CSS properties that the animation will move toward.
options:Map A map of additional options to pass to the method. Supported keys:

duration: A string or number determining how long the animation will run.
easing: A string indicating which easing function to use for the transition.
complete: A function to call once the animation is complete.
step: A function to be called after each step of the animation.
queue: A Boolean indicating whether to place the animation in the effects queue. If false,
the animation will begin immediately.
specialEasing: A map of one or more of the CSS properties defined by the properties

argument and their corresponding easing functions (added 1.4).

The .animate() method allows us to create animation effects on any numeric CSS property. The only required parameter is a map of CSS
properties. This map is similar to the one that can be sent to the .css() method, except that the range of properties is more restrictive.

Animation Properties and Values

All animated properties should be animated to a single numeric value, except as noted below; most properties that are non-numeric cannot be
animated using basic jQuery functionality. (For example, width, height, or left can be animated but background-color cannot be.) Property
values are treated as a number of pixels unless otherwise specified. The units em and % can be specified where applicable.

In addition to style properties, some non-style properties such as scrollTop and scrollLeft, as well as custom properties, can be animated.

Shorthand CSS properties (e.g. margin, background, border) are not supported. For example, if you want to retrieve the rendered margin, use:
$(elem).css('marginTop') and $(elem).css('marginRight'), and so on.

In addition to numeric values, each property can take the strings 'show', 'hide', and 'toggle'. These shortcuts allow for custom hiding and
showing animations that take into account the display type of the element.

Animated properties can also be relative. If a value is supplied with a leading += or -= sequence of characters, then the target value is computed
by adding or subtracting the given number from the current value of the property.

Unlike shorthand animation methods such as .slideDown() and .fadeIn(), the .animate() method does not make hidden elements visible as
part of the effect. For example, given $('someElement').hide().animate({height:'20px'}, 500), the animation will run, but the element will
remain hidden.

Duration

Durations are given in milliseconds; higher values indicate slower animations, not faster ones. The strings 'fast' and 'slow' can be supplied to
indicate durations of 200 and 600 milliseconds, respectively.

Complete Function

If supplied, the complete callback function is fired once the animation is complete. This can be useful for stringing different animations together
in sequence. The callback is not sent any arguments, but this is set to the DOM element being animated. If multiple elements are animated, the
callback is executed once per matched element, not once for the animation as a whole.

Basic Usage

To animate any element, such as a simple image:

<div id="clickme">
 Click here
</div>
<img id="book" src="book.png" alt="" width="100" height="123"
 style="position: relative; left: 10px;" />

To animate the opacity, left offset, and height of the image simultaneously:

$('#clickme').click(function() {
 $('#book').animate({
 opacity: 0.25,
 left: '+=50',
 height: 'toggle'
 }, 5000, function() {
 // Animation complete.
 });
});

Note that the target value of the height property is 'toggle'. Since the image was visible before, the animation shrinks the height to 0 to hide it.

A second click then reverses this transition:

The opacity of the image is already at its target value, so this property is not animated by the second click. Since the target value for left is a
relative value, the image moves even farther to the right during this second animation.

Directional properties (top, right, bottom, left) have no discernible effect on elements if their position style property is static, which it is by
default.

Note: The jQuery UI project extends the .animate() method by allowing some non-numeric styles such as colors to be animated.
The project also includes mechanisms for specifying animations through CSS classes rather than individual attributes.

Note: if attempting to animate an element with a height or width of 0px, where contents of the element are visible due to overflow,
jQuery may clip this overflow during animation. By fixing the dimensions of the original element being hidden however, it is
possible to ensure that the animation runs smoothly. A clearfix can be used to automatically fix the dimensions of your main
element without the need to set this manually.

Step Function

The second version of .animate() provides a step option â€” a callback function that is fired at each step of the animation. This function is
useful for enabling custom animation types or altering the animation as it is occurring. It accepts two arguments (now and fx), and this is set to
the DOM element being animated.

now: the numeric value of the property being animated at each step
fx: a reference to the jQuery.fx prototype object, which contains a number of properties such as elem for the animated element, start and
end for the first and last value of the animated property, respectively, and prop for the property being animated.

Note that the step function is called for each animated property on each animated element. For example, given two list items, the step function
fires four times at each step of the animation:

$('li').animate({
 opacity: .5,
 height: '50%'
},
{
 step: function(now, fx) {
 var data = fx.elem.id + ' ' + fx.prop + ': ' + now;
 $('body').append('<div>' + data + '</div>');
 }
});

Easing

The remaining parameter of .animate() is a string naming an easing function to use. An easing function specifies the speed at which the
animation progresses at different points within the animation. The only easing implementations in the jQuery library are the default, called
swing, and one that progresses at a constant pace, called linear. More easing functions are available with the use of plug-ins, most notably the
jQuery UI suite.

Per-property Easing

As of jQuery version 1.4, you can set per-property easing functions within a single .animate() call. In the first version of .animate(), each
property can take an array as its value: The first member of the array is the CSS property and the second member is an easing function. If a
per-property easing function is not defined for a particular property, it uses the value of the .animate() method's optional easing argument. If
the easing argument is not defined, the default swing function is used.

For example, to simultaneously animate the width and height with the swing easing function and the opacity with the linear easing function:

$('#clickme').click(function() {
 $('#book').animate({
 width: ['toggle', 'swing'],
 height: ['toggle', 'swing'],
 opacity: 'toggle'

 }, 5000, 'linear', function() {
 $(this).after('<div>Animation complete.</div>');
 });
});

In the second version of .animate(), the options map can include the specialEasing property, which is itself a map of CSS properties and their
corresponding easing functions. For example, to simultaneously animate the width using the linear easing function and the height using the
easeOutBounce easing function:

$('#clickme').click(function() {
 $('#book').animate({
 width: 'toggle',
 height: 'toggle'
 }, {
 duration: 5000,
 specialEasing: {
 width: 'linear',
 height: 'easeOutBounce'
 },
 complete: function() {
 $(this).after('<div>Animation complete.</div>');
 }
 });
});

As previously noted, a plugin is required for the easeOutBounce function.

Example 1: Click the button to animate the div with a number of different properties.

Javascript

/* Using multiple unit types within one animation. */

$("#go").click(function(){
 $("#block").animate({
 width: "70%",
 opacity: 0.4,
 marginLeft: "0.6in",
 fontSize: "3em",
 borderWidth: "10px"
 }, 1500);
});

HTML

<button id="go">» Run</button>

<div id="block">Hello!</div>

CSS

div {
background-color:#bca;
width:100px;
border:1px solid green;
}

Example 2: Animates a div's left property with a relative value. Click several times on the buttons to see the relative animations queued up.

Javascript

$("#right").click(function(){
 $(".block").animate({"left": "+=50px"}, "slow");
});

$("#left").click(function(){
 $(".block").animate({"left": "-=50px"}, "slow");
});

HTML

<button id="left">«</button> <button id="right">»</button>
<div class="block"></div>

CSS

div {
 position:absolute;
 background-color:#abc;
 left:50px;
 width:90px;
 height:90px;
 margin:5px;
}

Example 3: The first button shows how an unqueued animation works. It expands the div out to 90% width while the font-size is increasing.
Once the font-size change is complete, the border animation will begin. The second button starts a traditional chained animation, where each
animation will start once the previous animation on the element has completed.

Javascript

$("#go1").click(function(){
 $("#block1").animate({ width: "90%" }, { queue: false, duration: 3000 })
 .animate({ fontSize: "24px" }, 1500)
 .animate({ borderRightWidth: "15px" }, 1500);
});

$("#go2").click(function(){
 $("#block2").animate({ width: "90%" }, 1000)
 .animate({ fontSize: "24px" }, 1000)
 .animate({ borderLeftWidth: "15px" }, 1000);
});

$("#go3").click(function(){
 $("#go1").add("#go2").click();
});

$("#go4").click(function(){
 $("div").css({ width: "", fontSize: "", borderWidth: "" });
});

HTML

<button id="go1">» Animate Block1</button>
<button id="go2">» Animate Block2</button>
<button id="go3">» Animate Both</button>

<button id="go4">» Reset</button>
<div id="block1">Block1</div>
<div id="block2">Block2</div>

CSS

div {
 background-color:#bca;
 width:200px;
 height:1.1em;
 text-align:center;
 border:2px solid green;
 margin:3px;
 font-size:14px;
}
button {
 font-size:14px;
}

Example 4: Animates the first div's left property and synchronizes the remaining divs, using the step function to set their left properties at each
stage of the animation.

Javascript

$("#go").click(function(){
 $(".block:first").animate({
 left: 100
 }, {
 duration: 1000,
 step: function(now, fx){
 $(".block:gt(0)").css("left", now);
 }
 });
});

CSS

div {
 position: relative;
 background-color: #abc;
 width: 40px;
 height: 40px;
 float: left;
 margin: 5px;
}

HTML

<p><button id="go">Run Â»</button></p>
<div class="block"></div> <div class="block"></div>
<div class="block"></div> <div class="block"></div>
<div class="block"></div> <div class="block"></div>

Example 5: Animates all paragraphs to toggle both height and opacity, completing the animation within 600 milliseconds.

Javascript

$("p").animate({
 "height": "toggle", "opacity": "toggle"
}, "slow");

Example 6: Animates all paragraph to a left style of 50 and opacity of 1 (opaque, visible), completing the animation within 500 milliseconds.

Javascript

$("p").animate({
 "left": "50", "opacity": 1
}, 500);

Example 7: An example of using an 'easing' function to provide a different style of animation. This will only work if you have a plugin that
provides this easing function. Note, this code will do nothing unless the paragraph element is hidden.

Javascript

$("p").animate({
 "opacity": "show"
}, "slow", "easein");

Example 8: Animates all paragraphs to toggle both height and opacity, completing the animation within 600 milliseconds.

Javascript

$("p").animate({
 "height": "toggle", "opacity": "toggle"
}, { duration: "slow" });

Example 9: Animates all paragraph to a left style of 50 and opacity of 1 (opaque, visible), completing the animation within 500 milliseconds. It
also will do it outside the queue, meaning it will automatically start without waiting for its turn.

Added in version 1.4.3

Javascript

$("p").animate({
 left: "50px", opacity: 1
}, { duration: 500, queue: false });

Example 10: An example of using an 'easing' function to provide a different style of animation. This will only work if you have a plugin that
provides this easing function.

Javascript

$("p").animate({
 "opacity": "show"
}, { "duration": "slow", "easing": "easein" });

Example 11: An example of using a callback function. The first argument is an array of CSS properties, the second specifies that the animation
should take 1000 milliseconds to complete, the third states the easing type, and the fourth argument is an anonymous callback function.

Javascript

$("p").animate({
 height:200, width:400, opacity: .5
}, 1000, "linear", function(){ alert("all done"); });

fadeTo

Adjust the opacity of the matched elements.

fadeTo(duration, opacity, easing, callback):jQuery

duration:String,Number A string or number determining how long the animation will run.
opacity:Number A number between 0 and 1 denoting the target opacity.
easing:String (optional) A string indicating which easing function to use for the transition.
callback:Callback (optional) A function to call once the animation is complete.

The .fadeTo() method animates the opacity of the matched elements.

Durations are given in milliseconds; higher values indicate slower animations, not faster ones. The strings 'fast' and 'slow' can be supplied to
indicate durations of 200 and 600 milliseconds, respectively. If any other string is supplied, the default duration of 400 milliseconds is used.
Unlike the other effect methods, .fadeTo() requires that duration be explicitly specified.

If supplied, the callback is fired once the animation is complete. This can be useful for stringing different animations together in sequence. The
callback is not sent any arguments, but this is set to the DOM element being animated. If multiple elements are animated, it is important to
note that the callback is executed once per matched element, not once for the animation as a whole.

We can animate any element, such as a simple image:

<div id="clickme">
 Click here
 </div>

 With the element initially shown, we can dim it slowly:
 $('#clickme').click(function() {
 $('#book').fadeTo('slow', 0.5, function() {
 // Animation complete.
 });
 });

With duration set to 0, this method just changes the opacity CSS property, so .fadeTo(0, opacity) is the same as .css('opacity', opacity).

Example 1: Animates first paragraph to fade to an opacity of 0.33 (33%, about one third visible), completing the animation within 600
milliseconds.

Javascript

$("p:first").click(function () {
$(this).fadeTo("slow", 0.33);
});

HTML

<p>
Click this paragraph to see it fade.
</p>

<p>
Compare to this one that won't fade.
</p>

Example 2: Fade div to a random opacity on each click, completing the animation within 200 milliseconds.

Javascript

$("div").click(function () {
$(this).fadeTo("fast", Math.random());
});

CSS

p { width:80px; margin:0; padding:5px; }
div { width:40px; height:40px; position:absolute; }
div#one { top:0; left:0; background:#f00; }
div#two { top:20px; left:20px; background:#0f0; }
div#three { top:40px; left:40px; background:#00f; }

HTML

<p>And this is the library that John built...</p>

<div id="one"></div>
<div id="two"></div>
<div id="three"></div>

Example 3: Find the right answer! The fade will take 250 milliseconds and change various styles when it completes.

Added in version 1.4.3

Javascript

var getPos = function (n) {
return (Math.floor(n) * 90) + "px";
};
$("p").each(function (n) {
var r = Math.floor(Math.random() * 3);
var tmp = $(this).text();
$(this).text($("p:eq(" + r + ")").text());
$("p:eq(" + r + ")").text(tmp);
$(this).css("left", getPos(n));
});
$("div").each(function (n) {
 $(this).css("left", getPos(n));
 })
.css("cursor", "pointer")
.click(function () {
 $(this).fadeTo(250, 0.25, function () {
 $(this).css("cursor", "")
 .prev().css({"font-weight": "bolder",
 "font-style": "italic"});
 });
 });

CSS

div, p { width:80px; height:40px; top:0; margin:0;
position:absolute; padding-top:8px; }
p { background:#fcc; text-align:center; }
div { background:blue; }

HTML

<p>Wrong</p>
<div></div>
<p>Wrong</p>
<div></div>

<p>Right!</p>
<div></div>

fadeOut

Hide the matched elements by fading them to transparent.

fadeOut(duration, easing, callback):jQuery

duration:String,Number (optional) A string or number determining how long the animation will run.
easing:String (optional) A string indicating which easing function to use for the transition.
callback:Callback (optional) A function to call once the animation is complete.

The .fadeOut() method animates the opacity of the matched elements. Once the opacity reaches 0, the display style property is set to none, so
the element no longer affects the layout of the page.

Durations are given in milliseconds; higher values indicate slower animations, not faster ones. The strings 'fast' and 'slow' can be supplied to
indicate durations of 200 and 600 milliseconds, respectively. If any other string is supplied, or if the duration parameter is omitted, the default
duration of 400 milliseconds is used.

We can animate any element, such as a simple image:

<div id="clickme">
 Click here
</div>

With the element initially shown, we can hide it slowly:

$('#clickme').click(function() {
 $('#book').fadeOut('slow', function() {
 // Animation complete.
 });
});

Note: To avoid unnecessary DOM manipulation, .fadeOut() will not hide an element that is already considered hidden. For
information on which elements jQuery considers hidden, see :hidden Selector.

Easing

As of jQuery 1.4.3, an optional string naming an easing function may be used. Easing functions specify the speed at which the animation
progresses at different points within the animation. The only easing implementations in the jQuery library are the default, called swing, and one
that progresses at a constant pace, called linear. More easing functions are available with the use of plug-ins, most notably the jQuery UI suite.

Callback Function

If supplied, the callback is fired once the animation is complete. This can be useful for stringing different animations together in sequence. The
callback is not sent any arguments, but this is set to the DOM element being animated. If multiple elements are animated, it is important to
note that the callback is executed once per matched element, not once for the animation as a whole.

As of jQuery 1.6, the .promise() method can be used in conjunction with the deferred.done() method to execute a single callback for the
animation as a whole when all matching elements have completed their animations (See the example for .promise()).

Example 1: Animates all paragraphs to fade out, completing the animation within 600 milliseconds.

Javascript

 $("p").click(function () {
 $("p").fadeOut("slow");
 });

CSS

 p { font-size:150%; cursor:pointer; }

HTML

<p>
 If you click on this paragraph
 you'll see it just fade away.
 </p>

Example 2: Fades out spans in one section that you click on.

Javascript

 $("span").click(function () {
 $(this).fadeOut(1000, function () {
 $("div").text("'" + $(this).text() + "' has faded!");
 $(this).remove();
 });
 });
 $("span").hover(function () {
 $(this).addClass("hilite");
 }, function () {
 $(this).removeClass("hilite");
 });

Added in version 1.4.3

CSS

 span { cursor:pointer; }
 span.hilite { background:yellow; }
 div { display:inline; color:red; }

HTML

<h3>Find the modifiers - <div></div></h3>
 <p>
 If you really want to go outside
 in the cold then make sure to wear
 your warm jacket given to you by
 your favorite teacher.
 </p>

Example 3: Fades out two divs, one with a "linear" easing and one with the default, "swing," easing.

Javascript

$("#btn1").click(function() {
 function complete() {
 $("<div/>").text(this.id).appendTo("#log");
 }

 $("#box1").fadeOut(1600, "linear", complete);
 $("#box2").fadeOut(1600, complete);
});

$("#btn2").click(function() {
 $("div").show();
 $("#log").empty();
});

CSS

.box,
button { float:left; margin:5px 10px 5px 0; }
.box { height:80px; width:80px; background:#090; }
#log { clear:left; }

HTML

<button id="btn1">fade out</button>
<button id="btn2">show</button>

<div id="log"></div>

<div id="box1" class="box">linear</div>
<div id="box2" class="box">swing</div>

fadeIn

Display the matched elements by fading them to opaque.

fadeIn(duration, easing, callback):jQuery

duration:String,Number (optional) A string or number determining how long the animation will run.
easing:String (optional) A string indicating which easing function to use for the transition.
callback:Callback (optional) A function to call once the animation is complete.

The .fadeIn() method animates the opacity of the matched elements.

Durations are given in milliseconds; higher values indicate slower animations, not faster ones. The strings 'fast' and 'slow' can be supplied to
indicate durations of 200 and 600 milliseconds, respectively. If any other string is supplied, or if the duration parameter is omitted, the default
duration of 400 milliseconds is used.

We can animate any element, such as a simple image:

<div id="clickme">
 Click here
 </div>

 With the element initially hidden, we can show it slowly:
 $('#clickme').click(function() {
 $('#book').fadeIn('slow', function() {
 // Animation complete
 });
 });

Easing

As of jQuery 1.4.3, an optional string naming an easing function may be used. Easing functions specify the speed at which the animation
progresses at different points within the animation. The only easing implementations in the jQuery library are the default, called swing, and one
that progresses at a constant pace, called linear. More easing functions are available with the use of plug-ins, most notably the jQuery UI suite.

Callback Function

If supplied, the callback is fired once the animation is complete. This can be useful for stringing different animations together in sequence. The
callback is not sent any arguments, but this is set to the DOM element being animated. If multiple elements are animated, it is important to
note that the callback is executed once per matched element, not once for the animation as a whole.

As of jQuery 1.6, the .promise() method can be used in conjunction with the deferred.done() method to execute a single callback for the
animation as a whole when all matching elements have completed their animations (See the example for .promise()).

Example 1: Animates hidden divs to fade in one by one, completing each animation within 600 milliseconds.

Javascript

 $(document.body).click(function () {
 $("div:hidden:first").fadeIn("slow");
 });

CSS

 span { color:red; cursor:pointer; }
 div { margin:3px; width:80px; display:none;
 height:80px; float:left; }
 div#one { background:#f00; }
 div#two { background:#0f0; }
 div#three { background:#00f; }

HTML

Click here...

 <div id="one"></div>
 <div id="two"></div>
 <div id="three"></div>

Example 2: Fades a red block in over the text. Once the animation is done, it quickly fades in more text on top.

Added in version 1.4.3

Javascript

 $("a").click(function () {
 $("div").fadeIn(3000, function () {
 $("span").fadeIn(100);
 });
 return false;
 });

CSS

 p { position:relative; width:400px; height:90px; }
 div { position:absolute; width:400px; height:65px;
 font-size:36px; text-align:center;
 color:yellow; background:red;
 padding-top:25px;
 top:0; left:0; display:none; }
 span { display:none; }

HTML

<p>
 Let it be known that the party of the first part
 and the party of the second part are henceforth
 and hereto directed to assess the allegations
 for factual correctness... (click!)
 <div>CENSORED!</div>

 </p>

slideToggle

Display or hide the matched elements with a sliding motion.

slideToggle(duration, easing, callback):jQuery

duration:String,Number (optional) A string or number determining how long the animation will run.
easing:String (optional) A string indicating which easing function to use for the transition.
callback:Callback (optional) A function to call once the animation is complete.

The .slideToggle() method animates the height of the matched elements. This causes lower parts of the page to slide up or down, appearing to
reveal or conceal the items. If the element is initially displayed, it will be hidden; if hidden, it will be shown. The display property is saved and
restored as needed. If an element has a display value of inline, then is hidden and shown, it will once again be displayed inline. When the
height reaches 0 after a hiding animation, the display style property is set to none to ensure that the element no longer affects the layout of the
page.

Durations are given in milliseconds; higher values indicate slower animations, not faster ones. The strings 'fast' and 'slow' can be supplied to
indicate durations of 200 and 600 milliseconds, respectively.

We can animate any element, such as a simple image:

<div id="clickme">
 Click here
</div>

We will cause .slideToggle() to be called when another element is clicked:

$('#clickme').click(function() {
 $('#book').slideToggle('slow', function() {
 // Animation complete.
 });
});

With the element initially shown, we can hide it slowly with the first click:

A second click will show the element once again:

Easing

As of jQuery 1.4.3, an optional string naming an easing function may be used. Easing functions specify the speed at which the animation
progresses at different points within the animation. The only easing implementations in the jQuery library are the default, called swing, and one
that progresses at a constant pace, called linear. More easing functions are available with the use of plug-ins, most notably the jQuery UI suite.

Callback Function

If supplied, the callback is fired once the animation is complete. This can be useful for stringing different animations together in sequence. The
callback is not sent any arguments, but this is set to the DOM element being animated. If multiple elements are animated, it is important to
note that the callback is executed once per matched element, not once for the animation as a whole.

As of jQuery 1.6, the .promise() method can be used in conjunction with the deferred.done() method to execute a single callback for the
animation as a whole when all matching elements have completed their animations (See the example for .promise()).

Example 1: Animates all paragraphs to slide up or down, completing the animation within 600 milliseconds.

Javascript

 $("button").click(function () {
 $("p").slideToggle("slow");
 });

CSS

 p { width:400px; }

HTML

<button>Toggle</button>

 <p>
 This is the paragraph to end all paragraphs. You
 should feel lucky to have seen such a paragraph in
 your life. Congratulations!
 </p>

Added in version 1.4.3

Example 2: Animates divs between dividers with a toggle that makes some appear and some disappear.

Javascript

 $("#aa").click(function () {
 $("div:not(.still)").slideToggle("slow", function () {
 var n = parseInt($("span").text(), 10);
 $("span").text(n + 1);
 });
 });

CSS

 div { background:#b977d1; margin:3px; width:60px;
 height:60px; float:left; }
 div.still { background:#345; width:5px; }
 div.hider { display:none; }
 span { color:red; }
 p { clear: left; }

HTML

<div></div>
<div class="still"></div>
<div style="display:none;">
</div><div class="still"></div>
<div></div>
<div class="still"></div>
<div class="hider"></div>
<div class="still"></div>
<div class="hider"></div>
<div class="still"></div>
<div></div>
<p><button id="aa">Toggle</button> There have been 0 toggled divs.</p>

slideUp

Hide the matched elements with a sliding motion.

slideUp(duration, easing, callback):jQuery

duration:String,Number (optional) A string or number determining how long the animation will run.
easing:String (optional) A string indicating which easing function to use for the transition.
callback:Callback (optional) A function to call once the animation is complete.

The .slideUp() method animates the height of the matched elements. This causes lower parts of the page to slide up, appearing to conceal the
items. Once the height reaches 0, the display style property is set to none to ensure that the element no longer affects the layout of the page.

Durations are given in milliseconds; higher values indicate slower animations, not faster ones. The strings 'fast' and 'slow' can be supplied to
indicate durations of 200 and 600 milliseconds, respectively. If any other string is supplied, or if the duration parameter is omitted, the default
duration of 400 milliseconds is used.

We can animate any element, such as a simple image:

<div id="clickme">
 Click here
</div>

With the element initially shown, we can hide it slowly:

$('#clickme').click(function() {
 $('#book').slideUp('slow', function() {
 // Animation complete.
 });
});

Easing

As of jQuery 1.4.3, an optional string naming an easing function may be used. Easing functions specify the speed at which the animation
progresses at different points within the animation. The only easing implementations in the jQuery library are the default, called swing, and one
that progresses at a constant pace, called linear. More easing functions are available with the use of plug-ins, most notably the jQuery UI suite.

Callback Function

If supplied, the callback is fired once the animation is complete. This can be useful for stringing different animations together in sequence. The
callback is not sent any arguments, but this is set to the DOM element being animated. If multiple elements are animated, it is important to
note that the callback is executed once per matched element, not once for the animation as a whole.

As of jQuery 1.6, the .promise() method can be used in conjunction with the deferred.done() method to execute a single callback for the
animation as a whole when all matching elements have completed their animations (See the example for .promise()).

Example 1: Animates all divs to slide up, completing the animation within 400 milliseconds.

Javascript

 $(document.body).click(function () {
 if ($("div:first").is(":hidden")) {
 $("div").show("slow");
 } else {
 $("div").slideUp();
 }
 });

CSS

 div { background:#3d9a44; margin:3px; width:80px;
 height:40px; float:left; }

HTML

Click me!
 <div></div>
 <div></div>
 <div></div>
 <div></div>

 <div></div>

Example 2: Animates the parent paragraph to slide up, completing the animation within 200 milliseconds. Once the animation is done, it displays
an alert.

Javascript

 $("button").click(function () {
 $(this).parent().slideUp("slow", function () {
 $("#msg").text($("button", this).text() + " has completed.");
 });
 });

Added in version 1.4.3

CSS

 div { margin:2px; }

HTML

<div>
 <button>Hide One</button>
 <input type="text" value="One" />

</div>
<div>
 <button>Hide Two</button>
 <input type="text" value="Two" />

</div>
<div>
 <button>Hide Three</button>
 <input type="text" value="Three" />

</div>
<div id="msg"></div>

slideDown

Display the matched elements with a sliding motion.

slideDown(duration, easing, callback):jQuery

duration:String,Number (optional) A string or number determining how long the animation will run.
easing:String (optional) A string indicating which easing function to use for the transition.
callback:Callback (optional) A function to call once the animation is complete.

The .slideDown() method animates the height of the matched elements. This causes lower parts of the page to slide down, making way for the
revealed items.

Durations are given in milliseconds; higher values indicate slower animations, not faster ones. The strings 'fast' and 'slow' can be supplied to
indicate durations of 200 and 600 milliseconds, respectively. If any other string is supplied, or if the duration parameter is omitted, the default
duration of 400 milliseconds is used.

We can animate any element, such as a simple image:

<div id="clickme">
 Click here
</div>

With the element initially hidden, we can show it slowly:

$('#clickme').click(function() {
 $('#book').slideDown('slow', function() {
 // Animation complete.
 });
});

Easing

As of jQuery 1.4.3, an optional string naming an easing function may be used. Easing functions specify the speed at which the animation
progresses at different points within the animation. The only easing implementations in the jQuery library are the default, called swing, and one
that progresses at a constant pace, called linear. More easing functions are available with the use of plug-ins, most notably the jQuery UI suite.

Callback Function

If supplied, the callback is fired once the animation is complete. This can be useful for stringing different animations together in sequence. The
callback is not sent any arguments, but this is set to the DOM element being animated. If multiple elements are animated, it is important to
note that the callback is executed once per matched element, not once for the animation as a whole.

As of jQuery 1.6, the .promise() method can be used in conjunction with the deferred.done() method to execute a single callback for the
animation as a whole when all matching elements have completed their animations (See the example for .promise()).

Example 1: Animates all divs to slide down and show themselves over 600 milliseconds.

Javascript

$(document.body).click(function () {
if ($("div:first").is(":hidden")) {
$("div").slideDown("slow");
} else {
$("div").hide();
}
});

CSS

div { background:#de9a44; margin:3px; width:80px;
height:40px; display:none; float:left; }

HTML

Click me!
<div></div>
<div></div>
<div></div>

Example 2: Animates all inputs to slide down, completing the animation within 1000 milliseconds. Once the animation is done, the input look is
changed especially if it is the middle input which gets the focus.

Javascript

$("div").click(function () {
$(this).css({ borderStyle:"inset", cursor:"wait" });
$("input").slideDown(1000,function(){
$(this).css("border", "2px red inset")
.filter(".middle")
 .css("background", "yellow")
 .focus();
$("div").css("visibility", "hidden");
});
});

CSS

div { background:#cfd; margin:3px; width:50px;
text-align:center; float:left; cursor:pointer;
border:2px outset black; font-weight:bolder; }
input { display:none; width:120px; float:left;
margin:10px; }

HTML

<div>Push!</div>
<input type="text" />
<input type="text" class="middle" />

<input type="text" />

Added in version 1.3

toggle

Display or hide the matched elements.

toggle(showOrHide):jQuery

showOrHide:Boolean A Boolean indicating whether to show or hide the elements.

With no parameters, the .toggle() method simply toggles the visibility of elements:

$('.target').toggle();

The matched elements will be revealed or hidden immediately, with no animation, by changing the CSS display property. If the element is
initially displayed, it will be hidden; if hidden, it will be shown. The display property is saved and restored as needed. If an element has a
display value of inline, then is hidden and shown, it will once again be displayed inline.

When a duration is provided, .toggle() becomes an animation method. The .toggle() method animates the width, height, and opacity of the
matched elements simultaneously. When these properties reach 0 after a hiding animation, the display style property is set to none to ensure
that the element no longer affects the layout of the page.

Durations are given in milliseconds; higher values indicate slower animations, not faster ones. The strings 'fast' and 'slow' can be supplied to
indicate durations of 200 and 600 milliseconds, respectively.

Note: The event handling suite also has a method named .toggle(). Which one is fired depends on the set of arguments passed.

As of jQuery 1.4.3, an optional string naming an easing function may be used. Easing functions specify the speed at which the animation
progresses at different points within the animation. The only easing implementations in the jQuery library are the default, called swing, and one
that progresses at a constant pace, called linear. More easing functions are available with the use of plug-ins, most notably the jQuery UI suite.

If supplied, the callback is fired once the animation is complete. This can be useful for stringing different animations together in sequence. The
callback is not sent any arguments, but this is set to the DOM element being animated. If multiple elements are animated, it is important to
note that the callback is executed once per matched element, not once for the animation as a whole.

We can animate any element, such as a simple image:

<div id="clickme">
 Click here
</div>

We will cause .toggle() to be called when another element is clicked:

$('#clickme').click(function() {
 $('#book').toggle('slow', function() {
 // Animation complete.
 });
});

With the element initially shown, we can hide it slowly with the first click:

A second click will show the element once again:

The second version of the method accepts a Boolean parameter. If this parameter is true, then the matched elements are shown; if false, the
elements are hidden. In essence, the statement:

$('#foo').toggle(showOrHide);

is equivalent to:

if (showOrHide == true) {
 $('#foo').show();
} else if (showOrHide == false) {
 $('#foo').hide();
}

Example 1: Toggles all paragraphs.

Javascript

$("button").click(function () {
$("p").toggle();
});

HTML

<button>Toggle</button>
<p>Hello</p>
<p style="display: none">Good Bye</p>

Example 2: Animates all paragraphs to be shown if they are hidden and hidden if they are visible, completing the animation within 600
milliseconds.

Javascript

$("button").click(function () {
$("p").toggle("slow");
});

CSS

p { background:#dad;
font-weight:bold;
font-size:16px; }

HTML

<button>Toggle 'em</button>

<p>Hiya</p>
<p>Such interesting text, eh?</p>

Example 3: Shows all paragraphs, then hides them all, back and forth.

Added in version 1.4.3

Javascript

var flip = 0;
$("button").click(function () {
$("p").toggle(flip++ % 2 == 0);
});

HTML

<button>Toggle</button>
<p>Hello</p>
<p style="display: none">Good Bye</p>

hide

Hide the matched elements.

hide(duration, easing, callback):jQuery

duration:String,Number (optional) A string or number determining how long the animation will run.
easing:String (optional) A string indicating which easing function to use for the transition.
callback:Callback (optional) A function to call once the animation is complete.

With no parameters, the .hide() method is the simplest way to hide an element:

$('.target').hide();

The matched elements will be hidden immediately, with no animation. This is roughly equivalent to calling .css('display', 'none'), except
that the value of the display property is saved in jQuery's data cache so that display can later be restored to its initial value. If an element has a
display value of inline, then is hidden and shown, it will once again be displayed inline.

When a duration is provided, .hide() becomes an animation method. The .hide() method animates the width, height, and opacity of the
matched elements simultaneously. When these properties reach 0, the display style property is set to none to ensure that the element no longer
affects the layout of the page.

Durations are given in milliseconds; higher values indicate slower animations, not faster ones. The strings 'fast' and 'slow' can be supplied to
indicate durations of 200 and 600 milliseconds, respectively.

As of jQuery 1.4.3, an optional string naming an easing function may be used. Easing functions specify the speed at which the animation
progresses at different points within the animation. The only easing implementations in the jQuery library are the default, called swing, and one
that progresses at a constant pace, called linear. More easing functions are available with the use of plug-ins, most notably the jQuery UI suite.

If supplied, the callback is fired once the animation is complete. This can be useful for stringing different animations together in sequence. The
callback is not sent any arguments, but this is set to the DOM element being animated. If multiple elements are animated, it is important to
note that the callback is executed once per matched element, not once for the animation as a whole.

We can animate any element, such as a simple image:

<div id="clickme">
 Click here
</div>

With the element initially shown, we can hide it slowly:
$('#clickme').click(function() {
 $('#book').hide('slow', function() {
 alert('Animation complete.');
 });
});

Example 1: Hides all paragraphs then the link on click.

Javascript

 $("p").hide();
 $("a").click(function (event) {
 event.preventDefault();
 $(this).hide();
 });

HTML

<p>Hello</p>
 Click to hide me too
 <p>Here is another paragraph</p>

Example 2: Animates all shown paragraphs to hide slowly, completing the animation within 600 milliseconds.

Javascript

 $("button").click(function () {
 $("p").hide("slow");
 });

CSS

 p { background:#dad; font-weight:bold; }

HTML

<button>Hide 'em</button>

 <p>Hiya</p>
 <p>Such interesting text, eh?</p>

Example 3: Animates all spans (words in this case) to hide fastly, completing each animation within 200 milliseconds. Once each animation is
done, it starts the next one.

Javascript

 $("#hidr").click(function () {
 $("span:last-child").hide("fast", function () {
 // use callee so don't have to name the function
 $(this).prev().hide("fast", arguments.callee);
 });
 });
 $("#showr").click(function () {
 $("span").show(2000);
 });

CSS

 span { background:#def3ca; padding:3px; float:left; }

Added in version 1.4.3

HTML

<button id="hidr">Hide</button>
 <button id="showr">Show</button>
 <div>

 Once upon a
 time there were
 three programmers...

 </div>

Example 4: Hides the divs when clicked over 2 seconds, then removes the div element when its hidden. Try clicking on more than one box at a
time.

Javascript

 for (var i = 0; i < 5; i++) {
 $("<div>").appendTo(document.body);
 }
 $("div").click(function () {
 $(this).hide(2000, function () {
 $(this).remove();
 });
 });

CSS

 div { background:#ece023; width:30px;
 height:40px; margin:2px; float:left; }

HTML

<div></div>

show

Display the matched elements.

show(duration, easing, callback):jQuery

duration:String,Number (optional) A string or number determining how long the animation will run.
easing:String (optional) A string indicating which easing function to use for the transition.
callback:Callback (optional) A function to call once the animation is complete.

With no parameters, the .show() method is the simplest way to display an element:

$('.target').show();

The matched elements will be revealed immediately, with no animation. This is roughly equivalent to calling .css('display', 'block'),
except that the display property is restored to whatever it was initially. If an element has a display value of inline, then is hidden and shown,
it will once again be displayed inline.

Note: If using !important in your styles, such as display: none !important, it is necessary to override the style using .css('display', 'block
!important') should you wish for .show() to function correctly.

When a duration is provided, .show() becomes an animation method. The .show() method animates the width, height, and opacity of the
matched elements simultaneously.

Durations are given in milliseconds; higher values indicate slower animations, not faster ones. The strings 'fast' and 'slow' can be supplied to
indicate durations of 200 and 600 milliseconds, respectively.

As of jQuery 1.4.3, an optional string naming an easing function may be used. Easing functions specify the speed at which the animation
progresses at different points within the animation. The only easing implementations in the jQuery library are the default, called swing, and one
that progresses at a constant pace, called linear. More easing functions are available with the use of plug-ins, most notably the jQuery UI suite.

If supplied, the callback is fired once the animation is complete. This can be useful for stringing different animations together in sequence. The
callback is not sent any arguments, but this is set to the DOM element being animated. If multiple elements are animated, it is important to
note that the callback is executed once per matched element, not once for the animation as a whole.

We can animate any element, such as a simple image:

<div id="clickme">
 Click here
</div>

With the element initially hidden, we can show it slowly:
$('#clickme').click(function() {
 $('#book').show('slow', function() {
 // Animation complete.
 });
});

Example 1: Animates all hidden paragraphs to show slowly, completing the animation within 600 milliseconds.

Javascript

 $("button").click(function () {
 $("p").show("slow");
 });

CSS

 p { background:yellow; }

HTML

<button>Show it</button>

 <p style="display: none">Hello 2</p>

Example 2: Animates all hidden divs to show fastly in order, completing each animation within 200 milliseconds. Once each animation is done, it
starts the next one.

Javascript

$("#showr").click(function () {
 $("div:eq(0)").show("fast", function () {
 /* use callee so don't have to name the function */
 $(this).next("div").show("fast", arguments.callee);
 });
});
$("#hidr").click(function () {
 $("div").hide(2000);
});

CSS

 div { background:#def3ca; margin:3px; width:80px;
 display:none; float:left; text-align:center; }

HTML

 <button id="showr">Show</button>
 <button id="hidr">Hide</button>
 <div>Hello 3,</div>

 <div>how</div>
 <div>are</div>
 <div>you?</div>

Example 3: Shows all span and input elements with an animation. Once the animation is done, it changes the text.

Javascript

function doIt() {
 $("span,div").show("slow");
}
/* can pass in function name */
$("button").click(doIt);

$("form").submit(function () {
 if ($("input").val() == "yes") {
 $("p").show(4000, function () {
 $(this).text("Ok, DONE! (now showing)");
 });
 }
 $("span,div").hide("fast");
 /* to stop the submit */
 return false;
});

CSS

 span { display:none; }
 div { display:none; }
 p { font-weight:bold; background-color:#fcd; }

HTML

<button>Do it!</button>
 Are you sure? (type 'yes' if you are)
 <div>
 <form>
 <input type="text" value="as;ldkfjalsdf"/>
 </form>
 </div>
 <p style="display:none;">I'm hidden...</p>

Added in version 1.5

Added in version 1.0

Ajax

jQuery.ajaxPrefilter

Handle custom Ajax options or modify existing options before each request is sent and before they are processed by $.ajax().

jQuery.ajaxPrefilter(dataTypes, handler(options, originalOptions, jqXHR)):undefined

dataTypes:String (optional) An optional string containing one or more space-separated dataTypes
handler(options, originalOptions,
jqXHR):Function A handler to set default values for future Ajax requests.

A typical prefilter registration using $.ajaxPrefilter() looks like this:

$.ajaxPrefilter(function(options, originalOptions, jqXHR) {
 // Modify options, control originalOptions, store jqXHR, etc
});

where:

options are the request options
originalOptions are the options as provided to the ajax method, unmodified and, thus, without defaults from ajaxSettings
jqXHR is the jqXHR object of the request

Prefilters are a perfect fit when custom options need to be handled. Given the following code, for example, a call to $.ajax() would
automatically abort a request to the same URL if the custom abortOnRetry option is set to true:

var currentRequests = {};

$.ajaxPrefilter(function(options, originalOptions, jqXHR) {
 if (options.abortOnRetry) {
 if (currentRequests[options.url]) {
 currentRequests[options.url].abort();
 }
 currentRequests[options.url] = jqXHR;
 }
});

Prefilters can also be used to modify existing options. For example, the following proxies cross-domain requests through http://mydomain.net
/proxy/:

$.ajaxPrefilter(function(options) {
 if (options.crossDomain) {
 options.url = "http://mydomain.net/proxy/" + encodeURIComponent(options.url);
 options.crossDomain = false;
 }
});

If the optional dataTypes argument is supplied, the prefilter will be only be applied to requests with the indicated dataTypes. For example, the
following only applies the given prefilter to JSON and script requests:

$.ajaxPrefilter("json script", function(options, originalOptions, jqXHR) {
 // Modify options, control originalOptions, store jqXHR, etc
});

The $.ajaxPrefilter() method can also redirect a request to another dataType by returning that dataType. For example, the following sets a
request as "script" if the URL has some specific properties defined in a custom isActuallyScript() function:

$.ajaxPrefilter(function(options) {
 if (isActuallyScript(options.url)) {
 return "script";
 }
});

This would ensure not only that the request is considered "script" but also that all the prefilters specifically attached to the script dataType
would be applied to it.

ajaxComplete

Register a handler to be called when Ajax requests complete. This is an Ajax Event.

ajaxComplete(handler(event, XMLHttpRequest, ajaxOptions)):jQuery

handler(event, XMLHttpRequest,
ajaxOptions):Function The function to be invoked.

Added in version 1.1

Whenever an Ajax request completes, jQuery triggers the ajaxComplete event. Any and all handlers that have been registered with the
.ajaxComplete() method are executed at this time.

To observe this method in action, we can set up a basic Ajax load request:

<div class="trigger">Trigger</div>
<div class="result"></div>
<div class="log"></div>

We can attach our event handler to any element:

$('.log').ajaxComplete(function() {
 $(this).text('Triggered ajaxComplete handler.');
});

Now, we can make an Ajax request using any jQuery method:

$('.trigger').click(function() {
 $('.result').load('ajax/test.html');
});

When the user clicks the button and the Ajax request completes, the log message is displayed.

Note: Because .ajaxComplete() is implemented as a method of jQuery object instances, we can use the this keyword as we do here to refer to
the selected elements within the callback function.

All ajaxComplete handlers are invoked, regardless of what Ajax request was completed. If we must differentiate between the requests, we can
use the parameters passed to the handler. Each time an ajaxComplete handler is executed, it is passed the event object, the XMLHttpRequest
object, and the settings object that was used in the creation of the request. For example, we can restrict our callback to only handling events
dealing with a particular URL:

Note: You can get the returned ajax contents by looking at xhr.responseXML or xhr.responseHTML for xml and html respectively.

$('.log').ajaxComplete(function(e, xhr, settings) {
 if (settings.url == 'ajax/test.html') {
 $(this).text('Triggered ajaxComplete handler. The result is ' +
 xhr.responseHTML);
 }
});

Example 1: Show a message when an Ajax request completes.

Javascript

$("#msg").ajaxComplete(function(event,request, settings){
 $(this).append("Request Complete.");
 });

serializeArray: see Forms

serialize: see Forms

jQuery.ajaxSetup

Set default values for future Ajax requests.

jQuery.ajaxSetup(options):

options:Options A set of key/value pairs that configure the default Ajax request. All options are optional.

For details on the settings available for $.ajaxSetup(), see $.ajax().

All subsequent Ajax calls using any function will use the new settings, unless overridden by the individual calls, until the next invocation of
$.ajaxSetup().

For example, the following sets a default for the url parameter before pinging the server repeatedly:

$.ajaxSetup({
 url: 'ping.php'
});

Now each time an Ajax request is made, the "ping.php" URL will be used automatically:

$.ajax({

Added in version 1.0

 // url not set here; uses ping.php
 data: {'name': 'Dan'}
});

Note: Global callback functions should be set with their respective global Ajax event handler methodsâ€”.ajaxStart(),
.ajaxStop(), .ajaxComplete(), .ajaxError(), .ajaxSuccess(), .ajaxSend()â€”rather than within the options object for
$.ajaxSetup().

Example 1: Sets the defaults for Ajax requests to the url "/xmlhttp/", disables global handlers and uses POST instead of GET. The following Ajax
requests then sends some data without having to set anything else.

Javascript

$.ajaxSetup({
 url: "/xmlhttp/",
 global: false,
 type: "POST"

 });
 $.ajax({ data: myData });

ajaxSuccess

Attach a function to be executed whenever an Ajax request completes successfully. This is an Ajax Event.

ajaxSuccess(handler(event, XMLHttpRequest, ajaxOptions)):jQuery

handler(event, XMLHttpRequest,
ajaxOptions):Function The function to be invoked.

Whenever an Ajax request completes successfully, jQuery triggers the ajaxSuccess event. Any and all handlers that have been registered with
the .ajaxSuccess() method are executed at this time.

To observe this method in action, we can set up a basic Ajax load request:

<div class="trigger">Trigger</div>
<div class="result"></div>
<div class="log"></div>

We can attach our event handler to any element:

$('.log').ajaxSuccess(function() {
 $(this).text('Triggered ajaxSuccess handler.');
});

Now, we can make an Ajax request using any jQuery method:

$('.trigger').click(function() {
 $('.result').load('ajax/test.html');
});

When the user clicks the button and the Ajax request completes successfully, the log message is displayed.

Note: Because .ajaxSuccess() is implemented as a method of jQuery object instances, we can use the this keyword as we do here to refer to
the selected elements within the callback function.

All ajaxSuccess handlers are invoked, regardless of what Ajax request was completed. If we must differentiate between the requests, we can
use the parameters passed to the handler. Each time an ajaxSuccess handler is executed, it is passed the event object, the XMLHttpRequest object,
and the settings object that was used in the creation of the request. For example, we can restrict our callback to only handling events dealing
with a particular URL:

Note: You can get the returned ajax contents by looking at xhr.responseXML or xhr.responseHTML for xml and html respectively.

$('.log').ajaxSuccess(function(e, xhr, settings) {
 if (settings.url == 'ajax/test.html') {
 $(this).text('Triggered ajaxSuccess handler. The ajax response was:'
 + xhr.responseHTML);
 }
});

Example 1: Show a message when an Ajax request completes successfully.

Added in version 1.0

Added in version 1.0

Javascript

$("#msg").ajaxSuccess(function(evt, request, settings){
 $(this).append("Successful Request!");
 });

ajaxStop

Register a handler to be called when all Ajax requests have completed. This is an Ajax Event.

ajaxStop(handler()):jQuery

handler():Function The function to be invoked.

Whenever an Ajax request completes, jQuery checks whether there are any other outstanding Ajax requests. If none remain, jQuery triggers the
ajaxStop event. Any and all handlers that have been registered with the .ajaxStop() method are executed at this time. The ajaxStop event is
also triggered if the last outstanding Ajax request is cancelled by returning false within the beforeSend callback function.

To observe this method in action, we can set up a basic Ajax load request:

<div class="trigger">Trigger</div>
<div class="result"></div>
<div class="log"></div>

We can attach our event handler to any element:

$('.log').ajaxStop(function() {
 $(this).text('Triggered ajaxStop handler.');
});

Now, we can make an Ajax request using any jQuery method:

$('.trigger').click(function() {
 $('.result').load('ajax/test.html');
});

When the user clicks the button and the Ajax request completes, the log message is displayed.

Because .ajaxStop() is implemented as a method of jQuery object instances, we can use the this keyword as we do here to refer to the selected
elements within the callback function.

Example 1: Hide a loading message after all the Ajax requests have stopped.

Javascript

$("#loading").ajaxStop(function(){
 $(this).hide();
 });

ajaxStart

Register a handler to be called when the first Ajax request begins. This is an Ajax Event.

ajaxStart(handler()):jQuery

handler():Function The function to be invoked.

Whenever an Ajax request is about to be sent, jQuery checks whether there are any other outstanding Ajax requests. If none are in progress,
jQuery triggers the ajaxStart event. Any and all handlers that have been registered with the .ajaxStart() method are executed at this time.

To observe this method in action, we can set up a basic Ajax load request:

<div class="trigger">Trigger</div>
<div class="result"></div>
<div class="log"></div>

We can attach our event handler to any element:

$('.log').ajaxStart(function() {
 $(this).text('Triggered ajaxStart handler.');
});

Now, we can make an Ajax request using any jQuery method:

Added in version 1.0

$('.trigger').click(function() {
 $('.result').load('ajax/test.html');
});

When the user clicks the button and the Ajax request is sent, the log message is displayed.

Note: Because .ajaxStart() is implemented as a method of jQuery object instances, we can use the this keyword as we do here to refer to the
selected elements within the callback function.

Example 1: Show a loading message whenever an Ajax request starts (and none is already active).

Javascript

$("#loading").ajaxStart(function(){
 $(this).show();
 });

ajaxSend

Attach a function to be executed before an Ajax request is sent. This is an Ajax Event.

ajaxSend(handler(event, jqXHR, ajaxOptions)):jQuery

handler(event, jqXHR,
ajaxOptions):Function The function to be invoked.

Whenever an Ajax request is about to be sent, jQuery triggers the ajaxSend event. Any and all handlers that have been registered with the
.ajaxSend() method are executed at this time.

To observe this method in action, we can set up a basic Ajax load request:

<div class="trigger">Trigger</div>
<div class="result"></div>
<div class="log"></div>

We can attach our event handler to any element:

$('.log').ajaxSend(function() {
 $(this).text('Triggered ajaxSend handler.');
});

Now, we can make an Ajax request using any jQuery method:

$('.trigger').click(function() {
 $('.result').load('ajax/test.html');
});

When the user clicks the button and the Ajax request is about to begin, the log message is displayed.

Note: Because .ajaxSend() is implemented as a method of jQuery instances, we can use the this keyword as we do here to refer to the selected
elements within the callback function.

All ajaxSend handlers are invoked, regardless of what Ajax request is to be sent. If we must differentiate between the requests, we can use the
parameters passed to the handler. Each time an ajaxSend handler is executed, it is passed the event object, the jqXHR object (in version 1.4,
XMLHttpRequestobject), and the settings object that was used in the creation of the Ajax request. For example, we can restrict our callback to
only handling events dealing with a particular URL:

$('.log').ajaxSend(function(e, jqxhr, settings) {
 if (settings.url == 'ajax/test.html') {
 $(this).text('Triggered ajaxSend handler.');
 }
});

Example 1: Show a message before an Ajax request is sent.

Javascript

$("#msg").ajaxSend(function(evt, request, settings){
 $(this).append("Starting request at " + settings.url + "");
 });

ajaxError

Register a handler to be called when Ajax requests complete with an error. This is an Ajax Event.

Added in version 1.0

Added in version 1.0

ajaxError(handler(event, jqXHR, ajaxSettings, thrownError)):jQuery

handler(event, jqXHR,
ajaxSettings,
thrownError):Function

The function to be invoked.

Whenever an Ajax request completes with an error, jQuery triggers the ajaxError event. Any and all handlers that have been registered with the
.ajaxError() method are executed at this time.

To observe this method in action, set up a basic Ajax load request.

<button class="trigger">Trigger</button>
<div class="result"></div>
<div class="log"></div>

Attach the event handler to any element:

$("div.log").ajaxError(function() {
 $(this).text("Triggered ajaxError handler.");
});

Now, make an Ajax request using any jQuery method:

$("button.trigger").click(function() {
 $("div.result").load("ajax/missing.html");
});

When the user clicks the button and the Ajax request fails, because the requested file is missing, the log message is displayed.

Note: Because .ajaxError() is implemented as a method of jQuery object instances, you can use the this keyword within the callback function
to refer to the selected elements.

All ajaxError handlers are invoked, regardless of what Ajax request was completed. To differentiate between the requests, you can use the
parameters passed to the handler. Each time an ajaxError handler is executed, it is passed the event object, the jqXHR object (prior to jQuery 1.5,
the XHR object), and the settings object that was used in the creation of the request. If the request failed because JavaScript raised an exception,
the exception object is passed to the handler as a fourth parameter. For example, to restrict the error callback to only handling events dealing
with a particular URL:

$("div.log").ajaxError(function(e, jqxhr, settings, exception) {
 if (settings.url == "ajax/missing.html") {
 $(this).text("Triggered ajaxError handler.");
 }
});

Example 1: Show a message when an Ajax request fails.

Javascript

$("#msg").ajaxError(function(event, request, settings){
 $(this).append("Error requesting page " + settings.url + "");
});

jQuery.post

Load data from the server using a HTTP POST request.

jQuery.post(url, data, success(data, textStatus, jqXHR), dataType):jqXHR

url:String A string containing the URL to which the request is sent.
data:Map, String (optional) A map or string that is sent to the server with the request.
success(data, textStatus,
jqXHR):Function (optional) A callback function that is executed if the request succeeds.

dataType:String (optional) The type of data expected from the server. Default: Intelligent Guess (xml, json,
script, or html).

This is a shorthand Ajax function, which is equivalent to:

$.ajax({
 type: 'POST',
 url: url,
 data: data,
 success: success,
 dataType: dataType
});

The success callback function is passed the returned data, which will be an XML root element or a text string depending on the MIME type of
the response. It is also passed the text status of the response.

As of jQuery 1.5, the success callback function is also passed a "jqXHR" object (in jQuery 1.4, it was passed the XMLHttpRequest object).

Most implementations will specify a success handler:

$.post('ajax/test.html', function(data) {
 $('.result').html(data);
});

This example fetches the requested HTML snippet and inserts it on the page.

Pages fetched with POST are never cached, so the cache and ifModified options in jQuery.ajaxSetup() have no effect on these requests.

The jqXHR Object

As of jQuery 1.5, all of jQuery's Ajax methods return a superset of the XMLHTTPRequest object. This jQuery XHR object, or "jqXHR," returned
by $.post() implements the Promise interface, giving it all the properties, methods, and behavior of a Promise (see Deferred object for more
information). For convenience and consistency with the callback names used by $.ajax(), it provides .error(), .success(), and .complete()
methods. These methods take a function argument that is called when the request terminates, and the function receives the same arguments as
the correspondingly-named $.ajax() callback.

The Promise interface in jQuery 1.5 also allows jQuery's Ajax methods, including $.post(), to chain multiple .success(), .complete(), and
.error() callbacks on a single request, and even to assign these callbacks after the request may have completed. If the request is already
complete, the callback is fired immediately.

// Assign handlers immediately after making the request,
 // and remember the jqxhr object for this request
 var jqxhr = $.post("example.php", function() {
 alert("success");
 })
 .success(function() { alert("second success"); })
 .error(function() { alert("error"); })
 .complete(function() { alert("complete"); });

 // perform other work here ...

 // Set another completion function for the request above
 jqxhr.complete(function(){ alert("second complete"); });

Example 1: Request the test.php page, but ignore the return results.

Javascript

$.post("test.php");

Example 2: Request the test.php page and send some additional data along (while still ignoring the return results).

Javascript

$.post("test.php", { name: "John", time: "2pm" });

Example 3: pass arrays of data to the server (while still ignoring the return results).

Javascript

$.post("test.php", { 'choices[]': ["Jon", "Susan"] });

Example 4: send form data using ajax requests

Javascript

$.post("test.php", $("#testform").serialize());

Example 5: Alert out the results from requesting test.php (HTML or XML, depending on what was returned).

Javascript

$.post("test.php", function(data) {
 alert("Data Loaded: " + data);
 });

Example 6: Alert out the results from requesting test.php with an additional payload of data (HTML or XML, depending on what was returned).

Javascript

$.post("test.php", { name: "John", time: "2pm" },
 function(data) {
 alert("Data Loaded: " + data);
 });

Example 7: Gets the test.php page content, store it in a XMLHttpResponse object and applies the process() JavaScript function.

Javascript

$.post("test.php", { name: "John", time: "2pm" },
 function(data) {
 process(data);
 },
 "xml"
);

Example 8: Posts to the test.php page and gets contents which has been returned in json format (<?php echo
json_encode(array("name"=>"John","time"=>"2pm")); ?>).

Javascript

$.post("test.php", { "func": "getNameAndTime" },
 function(data){
 console.log(data.name); // John
 console.log(data.time); // 2pm
 }, "json");

Example 9: Post a form using ajax and put results in a div

Javascript

 /* attach a submit handler to the form */
 $("#searchForm").submit(function(event) {

 /* stop form from submitting normally */
 event.preventDefault();

 /* get some values from elements on the page: */
 var $form = $(this),
 term = $form.find('input[name="s"]').val(),
 url = $form.attr('action');

 /* Send the data using post and put the results in a div */
 $.post(url, { s: term },
 function(data) {
 var content = $(data).find('#content');
 $("#result").empty().append(content);
 }
);
 });

HTML

<form action="/" id="searchForm">
 <input type="text" name="s" placeholder="Search..." />
 <input type="submit" value="Search" />
 </form>
 <!-- the result of the search will be rendered inside this div -->
 <div id="result"></div>

jQuery.getScript

Added in version 1.0

Added in version 1.0

Load a JavaScript file from the server using a GET HTTP request, then execute it.

jQuery.getScript(url, success(data, textStatus)):jqXHR

url:String A string containing the URL to which the request is sent.
success(data,
textStatus):Function (optional) A callback function that is executed if the request succeeds.

This is a shorthand Ajax function, which is equivalent to:

$.ajax({
 url: url,
 dataType: "script",
 success: success
});

The callback is passed the returned JavaScript file. This is generally not useful as the script will already have run at this point.

The script is executed in the global context, so it can refer to other variables and use jQuery functions. Included scripts can have some impact
on the current page:

$(".result").html("<p>Lorem ipsum dolor sit amet.</p>");

Scripts are included and run by referencing the file name:

$.getScript('ajax/test.js', function(data, textStatus){
 console.log(data); //data returned
 console.log(textStatus); //success
 console.log('Load was performed.');
});

Note: Should you require an additional callback for errors when using the getScript() method, the global ajaxError() callback event may be
used to achieve this as follows:

$("div.log").ajaxError(function(e, jqxhr, settings, exception) {
 if (settings.dataType=='script') {
 $(this).text("Triggered ajaxError handler.");
 }
});

Example 1: Load the official jQuery Color Animation plugin dynamically and bind some color animations to occur once the new functionality is
loaded.

Javascript

$.getScript("http://dev.jquery.com/view/trunk/plugins/color/jquery.color.js", function() {
 $("#go").click(function(){
 $(".block").animate({ backgroundColor: "pink" }, 1000)
 .delay(500)
 .animate({ backgroundColor: "blue" }, 1000);
 });
});

HTML

<button id="go">» Run</button>

<div class="block"></div>

CSS

.block {
 background-color: blue;
 width: 150px;
 height: 70px;
 margin: 10px;
}

jQuery.getJSON

Load JSON-encoded data from the server using a GET HTTP request.

jQuery.getJSON(url, data, success(data, textStatus, jqXHR)):jqXHR

url:String A string containing the URL to which the request is sent.
data:Map (optional) A map or string that is sent to the server with the request.
success(data, textStatus,
jqXHR):Function (optional) A callback function that is executed if the request succeeds.

This is a shorthand Ajax function, which is equivalent to:

$.ajax({
 url: url,
 dataType: 'json',
 data: data,
 success: callback
});

Data that is sent to the server is appended to the URL as a query string. If the value of the data parameter is an object (map), it is converted to a
string and url-encoded before it is appended to the URL.

Most implementations will specify a success handler:

$.getJSON('ajax/test.json', function(data) {
 var items = [];

 $.each(data, function(key, val) {
 items.push('<li id="' + key + '">' + val + '');
 });

 $('', {
 'class': 'my-new-list',
 html: items.join('')
 }).appendTo('body');
});

This example, of course, relies on the structure of the JSON file:

{
 "one": "Singular sensation",
 "two": "Beady little eyes",
 "three": "Little birds pitch by my doorstep"
}

Using this structure, the example loops through the requested data, builds an unordered list, and appends it to the body.

The success callback is passed the returned data, which is typically a JavaScript object or array as defined by the JSON structure and parsed
using the $.parseJSON() method. It is also passed the text status of the response.

As of jQuery 1.5, the success callback function receives a "jqXHR" object (in jQuery 1.4, it received the XMLHttpRequest object). However,
since JSONP and cross-domain GET requests do not use XHR, in those cases the jqXHR and textStatus parameters passed to the success
callback are undefined.

Important: As of jQuery 1.4, if the JSON file contains a syntax error, the request will usually fail silently. Avoid frequent
hand-editing of JSON data for this reason. JSON is a data-interchange format with syntax rules that are stricter than those of
JavaScript's object literal notation. For example, all strings represented in JSON, whether they are properties or values, must be
enclosed in double-quotes. For details on the JSON format, see http://json.org/.

JSONP

If the URL includes the string "callback=?" (or similar, as defined by the server-side API), the request is treated as JSONP instead. See the
discussion of the jsonp data type in $.ajax() for more details.

The jqXHR Object

As of jQuery 1.5, all of jQuery's Ajax methods return a superset of the XMLHTTPRequest object. This jQuery XHR object, or "jqXHR," returned
by $.getJSON() implements the Promise interface, giving it all the properties, methods, and behavior of a Promise (see Deferred object for more
information). For convenience and consistency with the callback names used by $.ajax(), it provides .error(), .success(), and .complete()
methods. These methods take a function argument that is called when the request terminates, and the function receives the same arguments as
the correspondingly-named $.ajax() callback.

The Promise interface in jQuery 1.5 also allows jQuery's Ajax methods, including $.getJSON(), to chain multiple .success(), .complete(), and
.error() callbacks on a single request, and even to assign these callbacks after the request may have completed. If the request is already
complete, the callback is fired immediately.

// Assign handlers immediately after making the request,
// and remember the jqxhr object for this request

Added in version 1.0

var jqxhr = $.getJSON("example.json", function() {
 alert("success");
})
.success(function() { alert("second success"); })
.error(function() { alert("error"); })
.complete(function() { alert("complete"); });

// perform other work here ...

// Set another completion function for the request above
jqxhr.complete(function(){ alert("second complete"); });

Example 1: Loads the four most recent cat pictures from the Flickr JSONP API.

Javascript

$.getJSON("http://api.flickr.com/services/feeds/photos_public.gne?jsoncallback=?",
 {
 tags: "cat",
 tagmode: "any",
 format: "json"
 },
 function(data) {
 $.each(data.items, function(i,item){
 $("").attr("src", item.media.m).appendTo("#images");
 if (i == 3) return false;
 });
 });

HTML

<div id="images">

</div>

CSS

img{ height: 100px; float: left; }

Example 2: Load the JSON data from test.js and access a name from the returned JSON data.

Javascript

$.getJSON("test.js", function(json) {
 alert("JSON Data: " + json.users[3].name);
 });

Example 3: Load the JSON data from test.js, passing along additional data, and access a name from the returned JSON data.

Javascript

$.getJSON("test.js", { name: "John", time: "2pm" }, function(json) {
 alert("JSON Data: " + json.users[3].name);
 });

jQuery.get

Load data from the server using a HTTP GET request.

jQuery.get(url, data, success(data, textStatus, jqXHR), dataType):jqXHR

url:String A string containing the URL to which the request is sent.
data:Map, String (optional) A map or string that is sent to the server with the request.
success(data, textStatus,
jqXHR):Function (optional) A callback function that is executed if the request succeeds.

dataType:String (optional) The type of data expected from the server. Default: Intelligent Guess (xml, json,
script, or html).

This is a shorthand Ajax function, which is equivalent to:

$.ajax({
 url: url,

 data: data,
 success: success,
 dataType: dataType
});

The success callback function is passed the returned data, which will be an XML root element, text string, JavaScript file, or JSON object,
depending on the MIME type of the response. It is also passed the text status of the response.

As of jQuery 1.5, the success callback function is also passed a "jqXHR" object (in jQuery 1.4, it was passed the XMLHttpRequest object).
However, since JSONP and cross-domain GET requests do not use XHR, in those cases the (j)XHR and textStatus parameters passed to the
success callback are undefined.

Most implementations will specify a success handler:

$.get('ajax/test.html', function(data) {
 $('.result').html(data);
 alert('Load was performed.');
});

This example fetches the requested HTML snippet and inserts it on the page.

The jqXHR Object

As of jQuery 1.5, all of jQuery's Ajax methods return a superset of the XMLHTTPRequest object. This jQuery XHR object, or "jqXHR," returned
by $.get() implements the Promise interface, giving it all the properties, methods, and behavior of a Promise (see Deferred object for more
information). For convenience and consistency with the callback names used by $.ajax(), it provides .error(), .success(), and .complete()
methods. These methods take a function argument that is called when the request terminates, and the function receives the same arguments as
the correspondingly-named $.ajax() callback.

The Promise interface in jQuery 1.5 also allows jQuery's Ajax methods, including $.get(), to chain multiple .success(), .complete(), and
.error() callbacks on a single request, and even to assign these callbacks after the request may have completed. If the request is already
complete, the callback is fired immediately.

// Assign handlers immediately after making the request,
 // and remember the jqxhr object for this request
 var jqxhr = $.get("example.php", function() {
 alert("success");
 })
 .success(function() { alert("second success"); })
 .error(function() { alert("error"); })
 .complete(function() { alert("complete"); });

 // perform other work here ...

 // Set another completion function for the request above
 jqxhr.complete(function(){ alert("second complete"); });

Example 1: Request the test.php page, but ignore the return results.

Javascript

$.get("test.php");

Example 2: Request the test.php page and send some additional data along (while still ignoring the return results).

Javascript

$.get("test.php", { name: "John", time: "2pm" });

Example 3: pass arrays of data to the server (while still ignoring the return results).

Javascript

$.get("test.php", { 'choices[]': ["Jon", "Susan"]});

Example 4: Alert out the results from requesting test.php (HTML or XML, depending on what was returned).

Added in version 1.0

Javascript

$.get("test.php", function(data){
alert("Data Loaded: " + data);
});

Example 5: Alert out the results from requesting test.cgi with an additional payload of data (HTML or XML, depending on what was returned).

Javascript

$.get("test.cgi", { name: "John", time: "2pm" },
 function(data){
 alert("Data Loaded: " + data);
 });

Example 6: Gets the test.php page contents, which has been returned in json format (<?php echo
json_encode(array("name"=>"John","time"=>"2pm")); ?>), and adds it to the page.

Javascript

$.get("test.php",
 function(data){
 $('body').append("Name: " + data.name) // John
 .append("Time: " + data.time); // 2pm
 }, "json");

load

Load data from the server and place the returned HTML into the matched element.

load(url, data, complete(responseText, textStatus, XMLHttpRequest)):jQuery

url:String A string containing the URL to which the request is sent.
data:Map, String A map or string that is sent to the server with the request.
complete(responseText,
textStatus,
XMLHttpRequest):Function

(optional) A callback function that is executed when the request completes.

This method is the simplest way to fetch data from the server. It is roughly equivalent to $.get(url, data, success) except that it is a method
rather than global function and it has an implicit callback function. When a successful response is detected (i.e. when textStatus is "success" or
"notmodified"), .load() sets the HTML contents of the matched element to the returned data. This means that most uses of the method can be
quite simple:

$('#result').load('ajax/test.html');

The provided callback, if any, is executed after this post-processing has been performed:

$('#result').load('ajax/test.html', function() {
 alert('Load was performed.');
});

In the two examples above, if the current document does not contain an element with an ID of "result," the .load() method is not executed.

The POST method is used if data is provided as an object; otherwise, GET is assumed.

Note: The event handling suite also has a method named .load(). Which one is fired depends on the set of arguments passed.

Loading Page Fragments

The .load() method, unlike $.get(), allows us to specify a portion of the remote document to be inserted. This is achieved with a special
syntax for the url parameter. If one or more space characters are included in the string, the portion of the string following the first space is
assumed to be a jQuery selector that determines the content to be loaded.

We could modify the example above to use only part of the document that is fetched:

$('#result').load('ajax/test.html #container');

When this method executes, it retrieves the content of ajax/test.html, but then jQuery parses the returned document to find the element with
an ID of container. This element, along with its contents, is inserted into the element with an ID of result, and the rest of the retrieved
document is discarded.

jQuery uses the browser's .innerHTML property to parse the retrieved document and insert it into the current document. During this process,
browsers often filter elements from the document such as <html>, <title>, or <head> elements. As a result, the elements retrieved by .load()
may not be exactly the same as if the document were retrieved directly by the browser.

Example 1: Load the main page's footer navigation into an ordered list.

Javascript

 $("#new-nav").load("/ #jq-footerNavigation li");

CSS

 body{ font-size: 12px; font-family: Arial; }

HTML

Footer navigation:
<ol id="new-nav">

Example 2: Display a notice if the Ajax request encounters an error.

Javascript

$("#success").load("/not-here.php", function(response, status, xhr) {
 if (status == "error") {
 var msg = "Sorry but there was an error: ";
 $("#error").html(msg + xhr.status + " " + xhr.statusText);
 }
});

CSS

 body{ font-size: 12px; font-family: Arial; }

HTML

Successful Response (should be blank):
<div id="success"></div>
Error Response:
<div id="error"></div>

Example 3: Load the feeds.html file into the div with the ID of feeds.

Javascript

$("#feeds").load("feeds.html");

Results

<div id="feeds">45 feeds found.</div>

Example 4: pass arrays of data to the server.

Javascript

$("#objectID").load("test.php", { 'choices[]': ["Jon", "Susan"] });

Example 5: Same as above, but will POST the additional parameters to the server and a callback that is executed when the server is finished
responding.

Added in version 1.0

Javascript

$("#feeds").load("feeds.php", {limit: 25}, function(){
alert("The last 25 entries in the feed have been loaded");
});

jQuery.ajax

Perform an asynchronous HTTP (Ajax) request.

jQuery.ajax(settings):jqXHR

settings:Map A set of key/value pairs that configure the Ajax request. All settings are optional. A default can
be set for any option with $.ajaxSetup().

The $.ajax() function underlies all Ajax requests sent by jQuery. It is often unnecessary to directly call this function, as several higher-level
alternatives like $.get() and .load() are available and are easier to use. If less common options are required, though, $.ajax() can be used
more flexibly.

At its simplest, the $.ajax() function can be called with no arguments:

$.ajax();

Note: Default settings can be set globally by using the $.ajaxSetup() function.

This example, using no options, loads the contents of the current page, but does nothing with the result. To use the result, we can implement one
of the callback functions.

The jqXHR Object

The jQuery XMLHttpRequest (jqXHR) object returned by $.ajax() as of jQuery 1.5 is a superset of the browser's native XMLHttpRequest
object. For example, it contains responseText and responseXML properties, as well as a getResponseHeader() method. When the transport
mechanism is something other than XMLHttpRequest (for example, a script tag for a JSONP request) the jqXHR object simulates native XHR
functionality where possible.

As of jQuery 1.5.1, the jqXHR object also contains the overrideMimeType() method (it was available in jQuery 1.4.x, as well, but was
temporarily removed in jQuery 1.5). The .overrideMimeType() method may be used in the beforeSend() callback function, for example, to
modify the response content-type header:

$.ajax({
 url: 'http://fiddle.jshell.net/favicon.png',
 beforeSend: function(xhr) {
 xhr.overrideMimeType('text/plain; charset=x-user-defined');
 },
 success: function(data) {
 if (console && console.log){
 console.log('Sample of data:', data.slice(0,100));
 }
 }
});

The jqXHR objects returned by $.ajax() as of jQuery 1.5 implement the Promise interface, giving them all the properties, methods, and
behavior of a Promise (see Deferred object for more information). For convenience and consistency with the callback names used by $.ajax(),
jqXHR also provides .error(), .success(), and .complete() methods. These methods take a function argument that is called when the
$.ajax() request terminates, and the function receives the same arguments as the correspondingly-named $.ajax() callback. This allows you to
assign multiple callbacks on a single request, and even to assign callbacks after the request may have completed. (If the request is already
complete, the callback is fired immediately.)

Deprecation Notice: The jqXHR.success(), jqXHR.error(), and jqXHR.complete() callbacks will be deprecated in jQuery 1.8. To
prepare your code for their eventual removal, use jqXHR.done(), jqXHR.fail(), and jqXHR.always() instead.

// Assign handlers immediately after making the request,
// and remember the jqxhr object for this request
var jqxhr = $.ajax("example.php")
 .success(function() { alert("success"); })
 .error(function() { alert("error"); })
 .complete(function() { alert("complete"); });

// perform other work here ...

// Set another completion function for the request above
jqxhr.complete(function(){ alert("second complete"); });

For backward compatibility with XMLHttpRequest, a jqXHR object will expose the following properties and methods:

readyState

status

statusText

responseXML and/or responseText when the underlying request responded with xml and/or text, respectively
setRequestHeader(name, value) which departs from the standard by replacing the old value with the new one rather than concatenating
the new value to the old one
getAllResponseHeaders()

getResponseHeader()

abort()

No onreadystatechange mechanism is provided, however, since success, error, complete and statusCode cover all conceivable requirements.

Callback Function Queues

The beforeSend, error, dataFilter, success and complete options all accept callback functions that are invoked at the appropriate times.

As of jQuery 1.5, the error (fail), success (done), and complete (always, as of jQuery 1.6) callback hooks are first-in, first-out managed
queues. This means you can assign more than one callback for each hook. See Deferred object methods, which are implemented internally for
these $.ajax() callback hooks.

The this reference within all callbacks is the object in the context option passed to $.ajax in the settings; if context is not specified, this is a
reference to the Ajax settings themselves.

Some types of Ajax requests, such as JSONP and cross-domain GET requests, do not use XHR; in those cases the XMLHttpRequest and
textStatus parameters passed to the callback are undefined.

Here are the callback hooks provided by $.ajax():

beforeSend callback is invoked; it receives the jqXHR object and the settings map as parameters.1.
error callbacks are invoked, in the order they are registered, if the request fails. They receive the jqXHR, a string indicating the error type,
and an exception object if applicable. Some built-in errors will provide a string as the exception object: "abort", "timeout", "No
Transport".

2.

dataFilter callback is invoked immediately upon successful receipt of response data. It receives the returned data and the value of
dataType, and must return the (possibly altered) data to pass on to success.

3.

success callbacks are then invoked, in the order they are registered, if the request succeeds. They receive the returned data, a string
containing the success code, and the jqXHR object.

4.

complete callbacks fire, in the order they are registered, when the request finishes, whether in failure or success. They receive the jqXHR
object, as well as a string containing the success or error code.

5.

For example, to make use of the returned HTML, we can implement a success handler:

$.ajax({
 url: 'ajax/test.html',
 success: function(data) {
 $('.result').html(data);
 alert('Load was performed.');
 }
});

Data Types

The $.ajax() function relies on the server to provide information about the retrieved data. If the server reports the return data as XML, the
result can be traversed using normal XML methods or jQuery's selectors. If another type is detected, such as HTML in the example above, the
data is treated as text.

Different data handling can be achieved by using the dataType option. Besides plain xml, the dataType can be html, json, jsonp, script, or text.

The text and xml types return the data with no processing. The data is simply passed on to the success handler, either through the responseText
or responseXML property of the jqXHR object, respectively.

Note: We must ensure that the MIME type reported by the web server matches our choice of dataType. In particular, XML must be declared by
the server as text/xml or application/xml for consistent results.

If html is specified, any embedded JavaScript inside the retrieved data is executed before the HTML is returned as a string. Similarly, script
will execute the JavaScript that is pulled back from the server, then return nothing.

The json type parses the fetched data file as a JavaScript object and returns the constructed object as the result data. To do so, it uses
jQuery.parseJSON() when the browser supports it; otherwise it uses a Function constructor. Malformed JSON data will throw a parse error (see
json.org for more information). JSON data is convenient for communicating structured data in a way that is concise and easy for JavaScript to

parse. If the fetched data file exists on a remote server, specify the jsonp type instead.

The jsonp type appends a query string parameter of callback=? to the URL. The server should prepend the JSON data with the callback name
to form a valid JSONP response. We can specify a parameter name other than callback with the jsonp option to $.ajax().

Note: JSONP is an extension of the JSON format, requiring some server-side code to detect and handle the query string parameter. More
information about it can be found in the original post detailing its use.

When data is retrieved from remote servers (which is only possible using the script or jsonp data types), the error callbacks and global events
will never be fired.

Sending Data to the Server

By default, Ajax requests are sent using the GET HTTP method. If the POST method is required, the method can be specified by setting a value
for the type option. This option affects how the contents of the data option are sent to the server. POST data will always be transmitted to the
server using UTF-8 charset, per the W3C XMLHTTPRequest standard.

The data option can contain either a query string of the form key1=value1&key2=value2, or a map of the form {key1: 'value1', key2:
'value2'}. If the latter form is used, the data is converted into a query string using jQuery.param() before it is sent. This processing can be
circumvented by setting processData to false. The processing might be undesirable if you wish to send an XML object to the server; in this
case, change the contentType option from application/x-www-form-urlencoded to a more appropriate MIME type.

Advanced Options

The global option prevents handlers registered using .ajaxSend(), .ajaxError(), and similar methods from firing when this request would
trigger them. This can be useful to, for example, suppress a loading indicator that was implemented with .ajaxSend() if the requests are
frequent and brief. With cross-domain script and JSONP requests, the global option is automatically set to false. See the descriptions of these
methods below for more details. See the descriptions of these methods below for more details.

If the server performs HTTP authentication before providing a response, the user name and password pair can be sent via the username and
password options.

Ajax requests are time-limited, so errors can be caught and handled to provide a better user experience. Request timeouts are usually either left
at their default or set as a global default using $.ajaxSetup() rather than being overridden for specific requests with the timeout option.

By default, requests are always issued, but the browser may serve results out of its cache. To disallow use of the cached results, set cache to
false. To cause the request to report failure if the asset has not been modified since the last request, set ifModified to true.

The scriptCharset allows the character set to be explicitly specified for requests that use a <script> tag (that is, a type of script or jsonp).
This is useful if the script and host page have differing character sets.

The first letter in Ajax stands for "asynchronous," meaning that the operation occurs in parallel and the order of completion is not guaranteed.
The async option to $.ajax() defaults to true, indicating that code execution can continue after the request is made. Setting this option to false
(and thus making the call no longer asynchronous) is strongly discouraged, as it can cause the browser to become unresponsive.

The $.ajax() function returns the XMLHttpRequest object that it creates. Normally jQuery handles the creation of this object internally, but a
custom function for manufacturing one can be specified using the xhr option. The returned object can generally be discarded, but does provide a
lower-level interface for observing and manipulating the request. In particular, calling .abort() on the object will halt the request before it
completes.

Extending Ajax

As of jQuery 1.5, jQuery's Ajax implementation includes prefilters, converters, and transports that allow you to extend Ajax with a great deal of
flexibility. For more information about these advanced features, see the Extending Ajax page.

Example 1: Load and execute a JavaScript file.

Javascript

$.ajax({
 type: "GET",
 url: "test.js",
 dataType: "script"
 });

Example 2: Save some data to the server and notify the user once it's complete.

Javascript

$.ajax({
 type: "POST",
 url: "some.php",
 data: "name=John&location=Boston",
 success: function(msg){
 alert("Data Saved: " + msg);
 }
 });

Example 3: Retrieve the latest version of an HTML page.

Javascript

$.ajax({
 url: "test.html",
 cache: false,
 success: function(html){
 $("#results").append(html);
 }
});

Example 4: Loads data synchronously. Blocks the browser while the requests is active. It is better to block user interaction by other means when
synchronization is necessary.

Javascript

var html = $.ajax({
 url: "some.php",
 async: false
 }).responseText;

Example 5: Sends an xml document as data to the server. By setting the processData option to false, the automatic conversion of data to strings
is prevented.

Javascript

var xmlDocument = [create xml document];
 $.ajax({
 url: "page.php",
 processData: false,
 data: xmlDocument,
 success: handleResponse
 });

Example 6: Sends an id as data to the server, save some data to the server and notify the user once it's complete. Note that this usage - returning
the result of the call into a variable - requires a synchronous (blocking) request! (async:false)

Javascript

var bodyContent = $.ajax({
 url: "script.php",
 global: false,
 type: "POST",
 data: {id : this.getAttribute('id')},
 dataType: "html",
 async:false,
 success: function(msg){
 alert(msg);
 }
 }
).responseText;

jQuery.param: see Forms

Added in version 1.4

Added in version 1.0

Miscellaneous

each: see Traversing

toArray

Retrieve all the DOM elements contained in the jQuery set, as an array.

toArray():Array

.toArray() returns all of the elements in the jQuery set:

alert($('li').toArray());

All of the matched DOM nodes are returned by this call, contained in a standard array:

[<li id="foo">, <li id="bar">]

Example 1: Selects all divs in the document and returns the DOM Elements as an Array, then uses the built-in reverse-method to reverse that
array.

Javascript

 function disp(divs) {
 var a = [];
 for (var i = 0; i < divs.length; i++) {
 a.push(divs[i].innerHTML);
 }
 $("span").text(a.join(" "));
 }

 disp($("div").toArray().reverse());

CSS

 span { color:red; }

HTML

Reversed -

 <div>One</div>
 <div>Two</div>
 <div>Three</div>

index

Search for a given element from among the matched elements.

index(element):Number

element:Element, jQuery The DOM element or first element within the jQuery object to look for.

Return Values

If no argument is passed to the .index() method, the return value is an integer indicating the position of the first element within the jQuery
object relative to its sibling elements.

If .index() is called on a collection of elements and a DOM element or jQuery object is passed in, .index() returns an integer indicating the
position of the passed element relative to the original collection.

If a selector string is passed as an argument, .index() returns an integer indicating the position of the original element relative to the elements
matched by the selector. If the element is not found, .index() will return -1.

Detail

The complementary operation to .get(), which accepts an index and returns a DOM node, .index() can take a DOM node and returns an
index. Suppose we have a simple unordered list on the page:

 <li id="foo">foo
 <li id="bar">bar
 <li id="baz">baz

If we retrieve one of the three list items (for example, through a DOM function or as the context to an event handler), .index() can search for
this list item within the set of matched elements:

var listItem = document.getElementById('bar');
alert('Index: ' + $('li').index(listItem));
We get back the zero-based position of the list item:

Index: 1

Similarly, if we retrieve a jQuery object consisting of one of the three list items, .index() will search for that list item:

var listItem = $('#bar');
alert('Index: ' + $('li').index(listItem));

We get back the zero-based position of the list item:

Index: 1

Note that if the jQuery collection used as the .index() method's argument contains more than one element, the first element within the matched
set of elements will be used.

var listItems = $('li:gt(0)');
alert('Index: ' + $('li').index(listItems));

We get back the zero-based position of the first list item within the matched set:

Index: 1

If we use a string as the .index() method's argument, it is interpreted as a jQuery selector string. The first element among the object's matched
elements which also matches this selector is located.

var listItem = $('#bar');
alert('Index: ' + listItem.index('li'));

We get back the zero-based position of the list item:

Index: 1

If we omit the argument, .index() will return the position of the first element within the set of matched elements in relation to its siblings:

alert('Index: ' + $('#bar').index();

Again, we get back the zero-based position of the list item:

Index: 1

Example 1: On click, returns the index (based zero) of that div in the page.

Javascript

$("div").click(function () {
 // this is the dom element clicked
 var index = $("div").index(this);
 $("span").text("That was div index #" + index);
});

CSS

div { background:yellow; margin:5px; }
span { color:red; }

HTML

Click a div!
<div>First div</div>
<div>Second div</div>
<div>Third div</div>

Example 2: Returns the index for the element with ID bar.

CSS

div { font-weight: bold; color: #090; }

Javascript

var listItem = $('#bar');
 $('div').html('Index: ' + $('li').index(listItem));

HTML

 <li id="foo">foo
 <li id="bar">bar
 <li id="baz">baz

<div></div>

Example 3: Returns the index for the first item in the jQuery collection.

CSS

div { font-weight: bold; color: #090; }

Javascript

var listItems = $('li:gt(0)');
$('div').html('Index: ' + $('li').index(listItems));

HTML

 <li id="foo">foo
 <li id="bar">bar
 <li id="baz">baz

<div></div>

Example 4: Returns the index for the element with ID bar in relation to all elements.

CSS

div { font-weight: bold; color: #090; }

Javascript

$('div').html('Index: ' + $('#bar').index('li'));

HTML

 <li id="foo">foo
 <li id="bar">bar
 <li id="baz">baz

<div></div>

Example 5: Returns the index for the element with ID bar in relation to its siblings.

CSS

div { font-weight: bold; color: #090; }

Added in version 1.0

Javascript

var barIndex = $('#bar').index();
$('div').html('Index: ' + barIndex);

HTML

 <li id="foo">foo
 <li id="bar">bar
 <li id="baz">baz

<div></div>

Example 6: Returns -1, as there is no element with ID foobar.

CSS

div { font-weight: bold; color: #090; }

Javascript

var foobar = $("li").index($('#foobar'));
$('div').html('Index: ' + foobar);

HTML

 <li id="foo">foo
 <li id="bar">bar
 <li id="baz">baz

<div></div>

removeData: see Data

data: see Data

data: see Data

get

Retrieve the DOM elements matched by the jQuery object.

get(index):Element, Array

index:Number (optional) A zero-based integer indicating which element to retrieve.

The .get() method grants us access to the DOM nodes underlying each jQuery object. Suppose we had a simple unordered list on the page:

 <li id="foo">foo
 <li id="bar">bar

Without a parameter, .get() returns all of the elements:

alert($('li').get());

All of the matched DOM nodes are returned by this call, contained in a standard array:

[<li id="foo">, <li id="bar">]

With an index specified, .get() will retrieve a single element:

($('li').get(0));

Since the index is zero-based, the first list item is returned:

<li id="foo">

Each jQuery object also masquerades as an array, so we can use the array dereferencing operator to get at the list item instead:

Added in version 1.0

alert($('li')[0]);

However, this syntax lacks some of the additional capabilities of .get(), such as specifying a negative index:

alert($('li').get(-1));

A negative index is counted from the end of the matched set, so this example will return the last item in the list:

<li id="bar">

Example 1: Selects all divs in the document and returns the DOM Elements as an Array, then uses the built-in reverse-method to reverse that
array.

Javascript

 function disp(divs) {
 var a = [];
 for (var i = 0; i < divs.length; i++) {
 a.push(divs[i].innerHTML);
 }
 $("span").text(a.join(" "));
 }

 disp($("div").get().reverse());

CSS

 span { color:red; }

HTML

Reversed -

 <div>One</div>
 <div>Two</div>
 <div>Three</div>

Example 2: Gives the tag name of the element clicked on.

Javascript

 $("*", document.body).click(function (e) {
 e.stopPropagation();
 var domEl = $(this).get(0);
 $("span:first").text("Clicked on - " + domEl.tagName);
 });

CSS

 span { color:red; }
 div { background:yellow; }

HTML

 <p>In this paragraph is an important section</p>

 <div><input type="text" /></div>

size

Return the number of elements in the jQuery object.

size():Number

The .size() method is functionally equivalent to the .length property; however, the .length property is preferred because it does not have the
overhead of a function call.

Given a simple unordered list on the page:

 foo
 bar

Both .size() and .length identify the number of items:

alert("Size: " + $("li").size());
alert("Size: " + $("li").length);

This results in two alerts:

Size: 2

Size: 2

Example 1: Count the divs. Click to add more.

Javascript

$(document.body)
.click(function() {
 $(this).append($("<div>"));
 var n = $("div").size();
 $("span").text("There are " + n + " divs. Click to add more.");
})
// trigger the click to start
.click();

CSS

 body { cursor:pointer; min-height: 100px; }
 div { width:50px; height:30px; margin:5px;
 float:left; background:blue; }
 span { color:red; }

HTML

 <div></div>

jQuery.noConflict: see Core

jQuery.param: see Forms

Dimensions

outerWidth: see CSS

outerHeight: see CSS

innerWidth: see CSS

innerHeight: see CSS

width: see CSS

width: see CSS

height: see CSS

height: see CSS

Offset

offsetParent: see Traversing

scrollLeft: see CSS

scrollLeft: see CSS

scrollTop: see CSS

scrollTop: see CSS

position: see CSS

offset: see CSS

offset: see CSS

Added in version 1.4.3

Added in version 1.5

Added in version 1.4.3

Utilities

jQuery.now

Return a number representing the current time.

jQuery.now():Number

The $.now() method is a shorthand for the number returned by the expression (new Date).getTime().

jQuery.parseXML

Parses a string into an XML document.

jQuery.parseXML(data):XMLDocument

data:String a well-formed XML string to be parsed

jQuery.parseXML uses the native parsing function of the browser to create a valid XML Document. This document can then be passed to jQuery
to create a typical jQuery object that can be traversed and manipulated.

Example 1: Create a jQuery object using an XML string and obtain the value of the title node.

HTML

<p id="someElement"></p>
<p id="anotherElement"></p>

Javascript

var xml = "<rss version='2.0'><channel><title>RSS Title</title></channel></rss>",
 xmlDoc = $.parseXML(xml),
 $xml = $(xmlDoc),
 $title = $xml.find("title");

/* append "RSS Title" to #someElement */
$("#someElement").append($title.text());

/* change the title to "XML Title" */
$title.text("XML Title");

/* append "XML Title" to #anotherElement */
$("#anotherElement").append($title.text());

jQuery.type

Determine the internal JavaScript [[Class]] of an object.

jQuery.type(obj):String

obj:Object Object to get the internal JavaScript [[Class]] of.

A number of techniques are used to determine the exact return value for an object. The [[Class]] is determined as follows:

If the object is undefined or null, then "undefined" or "null" is returned accordingly.
If the object has an internal [[Class]] equivalent to one of the browser's built-in objects, the associated name is returned. (More details
about this technique.)

jQuery.type(true) === "boolean"
jQuery.type(3) === "number"
jQuery.type("test") === "string"
jQuery.type(function(){}) === "function"
jQuery.type([]) === "array"
jQuery.type(new Date()) === "date"
jQuery.type(/test/) === "regexp"

Everything else returns "object" as its type.

Example 1: Find out if the parameter is a RegExp.

Added in version 1.4.3

Added in version 1.4.1

Added in version 1.4

Javascript

$("b").append("" + jQuery.type(/test/));

HTML

Is it a RegExp?

jQuery.isWindow

Determine whether the argument is a window.

jQuery.isWindow(obj):boolean

obj:Object Object to test whether or not it is a window.

This is used in a number of places in jQuery to determine if we're operating against a browser window (such as the current window or an
iframe).

Example 1: Finds out if the parameter is a window.

Javascript

$("b").append("" + $.isWindow(window));

HTML

Is 'window' a window?

jQuery.parseJSON

Takes a well-formed JSON string and returns the resulting JavaScript object.

jQuery.parseJSON(json):Object

json:String The JSON string to parse.

Passing in a malformed JSON string may result in an exception being thrown. For example, the following are all malformed JSON strings:

{test: 1} (test does not have double quotes around it).
{'test': 1} ('test' is using single quotes instead of double quotes).

Additionally if you pass in nothing, an empty string, null, or undefined, 'null' will be returned from parseJSON. Where the browser provides a
native implementation of JSON.parse, jQuery uses it to parse the string. For details on the JSON format, see http://json.org/.

Example 1: Parse a JSON string.

Javascript

var obj = jQuery.parseJSON('{"name":"John"}');
alert(obj.name === "John");

jQuery.proxy: see Events

jQuery.contains

Check to see if a DOM element is within another DOM element.

jQuery.contains(container, contained):Boolean

container:Element The DOM element that may contain the other element.
contained:Element The DOM element that may be contained by the other element.

Example 1: Check if an element is inside another. Text and comment nodes are not supported.

Added in version 1.4

Added in version 1.0.4

Added in version 1.1.4

Javascript

jQuery.contains(document.documentElement, document.body); // true
jQuery.contains(document.body, document.documentElement); // false

jQuery.noop

An empty function.

jQuery.noop():Function

You can use this empty function when you wish to pass around a function that will do nothing.

This is useful for plugin authors who offer optional callbacks; in the case that no callback is given, something like jQuery.noop could execute.

jQuery.globalEval

Execute some JavaScript code globally.

jQuery.globalEval(code):

code:String The JavaScript code to execute.

This method behaves differently from using a normal JavaScript eval() in that it's executed within the global context (which is important for
loading external scripts dynamically).

Example 1: Execute a script in the global context.

Javascript

function test(){
 jQuery.globalEval("var newVar = true;")
}
test();
// newVar === true

jQuery.isXMLDoc

Check to see if a DOM node is within an XML document (or is an XML document).

jQuery.isXMLDoc(node):Boolean

node:Element The DOM node that will be checked to see if it's in an XML document.

Example 1: Check an object to see if it's in an XML document.

Javascript

jQuery.isXMLDoc(document) // false
jQuery.isXMLDoc(document.body) // false

jQuery.removeData: see Data

jQuery.data: see Data

jQuery.data: see Data

jQuery.dequeue: see Data

jQuery.queue: see Data

jQuery.queue: see Data

clearQueue: see Data

jQuery.isEmptyObject

Check to see if an object is empty (contains no properties).

Added in version 1.4

Added in version 1.4

Added in version 1.0

jQuery.isEmptyObject(object):Boolean

object:Object The object that will be checked to see if it's empty.

As of jQuery 1.4 this method checks both properties on the object itself and properties inherited from prototypes (in that it doesn't use
hasOwnProperty). The argument should always be a plain JavaScript Object as other types of object (DOM elements, primitive
strings/numbers, host objects) may not give consistent results across browsers. To determine if an object is a plain JavaScript object, use
$.isPlainObject()

Example 1: Check an object to see if it's empty.

Javascript

jQuery.isEmptyObject({}) // true
jQuery.isEmptyObject({ foo: "bar" }) // false

jQuery.isPlainObject

Check to see if an object is a plain object (created using "{}" or "new Object").

jQuery.isPlainObject(object):Boolean

object:Object The object that will be checked to see if it's a plain object.

Note: Host objects (or objects used by browser host environments to complete the execution environment of ECMAScript) have a number of
inconsistencies which are difficult to robustly feature detect cross-platform. As a result of this, $.isPlainObject() may evaluate inconsistently
across browsers in certain instances.

An example of this is a test against document.location using $.isPlainObject() as follows:

console.log($.isPlainObject(document.location));

which throws an invalid pointer exception in IE8. With this in mind, it's important to be aware of any of the gotchas involved in using
$.isPlainObject() against older browsers. Some basic example of use-cases that do function correctly cross-browser can be found below.

Example 1: Check an object to see if it's a plain object.

Javascript

jQuery.isPlainObject({}) // true
jQuery.isPlainObject("test") // false

dequeue: see Data

queue: see Data

queue: see Data

jQuery.browser

Contains flags for the useragent, read from navigator.userAgent. We recommend against using this property; please try to use feature detection
instead (see jQuery.support). jQuery.browser may be moved to a plugin in a future release of jQuery.

The $.browser property provides information about the web browser that is accessing the page, as reported by the browser itself. It contains
flags for each of the four most prevalent browser classes (Internet Explorer, Mozilla, Webkit, and Opera) as well as version information.

Available flags are:

webkit (as of jQuery 1.4)
safari (deprecated)
opera
msie
mozilla

This property is available immediately. It is therefore safe to use it to determine whether or not to call $(document).ready(). The $.browser
property is deprecated in jQuery 1.3, and its functionality may be moved to a team-supported plugin in a future release of jQuery.

Because $.browser uses navigator.userAgent to determine the platform, it is vulnerable to spoofing by the user or misrepresentation by the
browser itself. It is always best to avoid browser-specific code entirely where possible. The $.support property is available for detection of
support for particular features rather than relying on $.browser.

Added in version 1.1.3

Example 1: Show the browser info.

Javascript

 jQuery.each(jQuery.browser, function(i, val) {
 $("<div>" + i + " : " + val + "")
 .appendTo(document.body);
 });

CSS

 p { color:green; font-weight:bolder; margin:3px 0 0 10px; }
 div { color:blue; margin-left:20px; font-size:14px; }
 span { color:red; }

HTML

<p>Browser info:</p>

Example 2: Returns true if the current useragent is some version of Microsoft's Internet Explorer.

Javascript

 $.browser.msie;

Example 3: Alerts "this is WebKit!" only for WebKit browsers

Javascript

 if ($.browser.webkit) {
 alert("this is webkit!");
 }

Example 4: Alerts "Do stuff for Firefox 3" only for Firefox 3 browsers.

Javascript

 var ua = $.browser;
 if (ua.mozilla && ua.version.slice(0,3) == "1.9") {
 alert("Do stuff for firefox 3");
 }

Example 5: Set a CSS property that's specific to a particular browser.

Javascript

 if ($.browser.msie) {
 $("#div ul li").css("display","inline");
 } else {
 $("#div ul li").css("display","inline-table");
 }

jQuery.browser.version

The version number of the rendering engine for the user's browser.

Here are some typical results:

Internet Explorer: 6.0, 7.0, 8.0
Mozilla/Firefox/Flock/Camino: 1.7.12, 1.8.1.3, 1.9
Opera: 10.06, 11.01
Safari/Webkit: 312.8, 418.9

Note that IE8 claims to be 7 in Compatibility View.

Example 1: Returns the version number of the rendering engine used by the user's current browser. For example, FireFox 4 returns 2.0 (the
version of the Gecko rendering engine it utilizes).

Added in version 1.0

Javascript

$("p").html("The version number of the rendering engine your browser uses is: " +
 $.browser.version + "");

CSS

 p { color:blue; margin:20px; }
 span { color:red; }

HTML

<p></p>

Example 2: Alerts the version of IE's rendering engine that is being used:

Javascript

if ($.browser.msie) {
 alert($.browser.version);
}

Example 3: Often you only care about the "major number," the whole number, which you can get by using JavaScript's built-in parseInt()
function:

Javascript

if ($.browser.msie) {
 alert(parseInt($.browser.version, 10));
}

jQuery.trim

Remove the whitespace from the beginning and end of a string.

jQuery.trim(str):String

str:String The string to trim.

The $.trim() function removes all newlines, spaces (including non-breaking spaces), and tabs from the beginning and end of the supplied
string. If these whitespace characters occur in the middle of the string, they are preserved.

Example 1: Remove the two white spaces at the start and at the end of the string.

Javascript

$("button").click(function () {
var str = " lots of spaces before and after ";
alert("'" + str + "'");

str = jQuery.trim(str);
alert("'" + str + "' - no longer");
});

HTML

<button>Show Trim Example</button>

Example 2: Remove the two white spaces at the start and at the end of the string.

Javascript

$.trim(" hello, how are you? ");

Added in version 1.2

Added in version 1.3

Results

"hello, how are you?"

jQuery.isFunction

Determine if the argument passed is a Javascript function object.

jQuery.isFunction(obj):boolean

obj:Object Object to test whether or not it is a function.

Note: As of jQuery 1.3, functions provided by the browser like alert() and DOM element methods like getAttribute() are not guaranteed to
be detected as functions in browsers such as Internet Explorer.

Example 1: Test a few parameter examples.

Javascript

 function stub() {
 }
 var objs = [
 function () {},
 { x:15, y:20 },
 null,
 stub,
 "function"
];

 jQuery.each(objs, function (i) {
 var isFunc = jQuery.isFunction(objs[i]);
 $("span").eq(i).text(isFunc);
 });

CSS

 div { color:blue; margin:2px; font-size:14px; }
 span { color:red; }

HTML

 <div>jQuery.isFunction(objs[0]) = </div>

 <div>jQuery.isFunction(objs[1]) = </div>
 <div>jQuery.isFunction(objs[2]) = </div>
 <div>jQuery.isFunction(objs[3]) = </div>

 <div>jQuery.isFunction(objs[4]) = </div>

Example 2: Finds out if the parameter is a function.

Javascript

$.isFunction(function(){});

Results

true

jQuery.isArray

Determine whether the argument is an array.

jQuery.isArray(obj):boolean

obj:Object Object to test whether or not it is an array.

$.isArray() returns a Boolean indicating whether the object is a JavaScript array (not an array-like object, such as a jQuery object).

Added in version 1.1.3

Added in version 1.0

Example 1: Finds out if the parameter is an array.

Javascript

$("b").append("" + $.isArray([]));

HTML

Is [] an Array?

jQuery.unique

Sorts an array of DOM elements, in place, with the duplicates removed. Note that this only works on arrays of DOM elements, not strings or
numbers.

jQuery.unique(array):Array

array:Array The Array of DOM elements.

The $.unique() function searches through an array of objects, sorting the array, and removing any duplicate nodes. This function only works on
plain JavaScript arrays of DOM elements, and is chiefly used internally by jQuery.

As of jQuery 1.4 the results will always be returned in document order.

Example 1: Removes any duplicate elements from the array of divs.

Javascript

 var divs = $("div").get(); // unique() must take a native array

 // add 3 elements of class dup too (they are divs)
 divs = divs.concat($(".dup").get());
 $("div:eq(1)").text("Pre-unique there are " + divs.length + " elements.");

 divs = jQuery.unique(divs);
 $("div:eq(2)").text("Post-unique there are " + divs.length + " elements.")
 .css("color", "red");

CSS

 div { color:blue; }

HTML

<div>There are 6 divs in this document.</div>
 <div></div>
 <div class="dup"></div>
 <div class="dup"></div>

 <div class="dup"></div>
 <div></div>

jQuery.merge

Merge the contents of two arrays together into the first array.

jQuery.merge(first, second):Array

first:Array The first array to merge, the elements of second added.
second:Array The second array to merge into the first, unaltered.

The $.merge() operation forms an array that contains all elements from the two arrays. The orders of items in the arrays are preserved, with
items from the second array appended. The $.merge() function is destructive. It alters the first parameter to add the items from the second.

If you need the original first array, make a copy of it before calling $.merge(). Fortunately, $.merge() itself can be used for this duplication:

var newArray = $.merge([], oldArray);

Added in version 1.2

This shortcut creates a new, empty array and merges the contents of oldArray into it, effectively cloning the array.

Prior to jQuery 1.4, the arguments should be true Javascript Array objects; use $.makeArray if they are not.

Example 1: Merges two arrays, altering the first argument.

Javascript

$.merge([0,1,2], [2,3,4])

Results

[0,1,2,2,3,4]

Example 2: Merges two arrays, altering the first argument.

Javascript

$.merge([3,2,1], [4,3,2])

Results

[3,2,1,4,3,2]

Example 3: Merges two arrays, but uses a copy, so the original isn't altered.

Javascript

var first = ['a','b','c'];
var second = ['d','e','f'];
$.merge($.merge([],first), second);

Results

["a","b","c","d","e","f"]

jQuery.inArray

Search for a specified value within an array and return its index (or -1 if not found).

jQuery.inArray(value, array):Number

value:Any The value to search for.
array:Array An array through which to search.

The $.inArray() method is similar to JavaScript's native .indexOf() method in that it returns -1 when it doesn't find a match. If the first
element within the array matches value, $.inArray() returns 0.

Because JavaScript treats 0 as loosely equal to false (i.e. 0 == false, but 0 !== false), if we're checking for the presence of value within array,
we need to check if it's not equal to (or greater than) -1.

Example 1: Report the index of some elements in the array.

Javascript

var arr = [4, "Pete", 8, "John"];

$("span:eq(0)").text(jQuery.inArray("John", arr));
$("span:eq(1)").text(jQuery.inArray(4, arr));
$("span:eq(2)").text(jQuery.inArray("Karl", arr));

CSS

 div { color:blue; }
 span { color:red; }

Added in version 1.6

HTML

<div>"John" found at </div>
<div>4 found at </div>
<div>"Karl" not found, so </div>

jQuery.map

Translate all items in an array or object to new array of items.

jQuery.map(arrayOrObject, callback(value, indexOrKey)):Array

arrayOrObject:Array,Object The Array or Object to translate.
callback(value, indexOrKey
):Function

The function to process each item against. The first argument to the function is the value; the
second argument is the index or key of the array or object property. The function can return any
value to add to the array. A returned array will be flattened into the resulting array. Within the
function, this refers to the global (window) object.

The $.map() method applies a function to each item in an array or object and maps the results into a new array. Prior to jQuery 1.6, $.map()
supports traversing arrays only. As of jQuery 1.6 it also traverses objects.

Array-like objects â€” those with a .length property and a value on the .length - 1 index â€” must be converted to actual arrays before being
passed to $.map(). The jQuery library provides $.makeArray() for such conversions.

// The following object masquerades as an array.
var fakeArray = {"length": 1, 0: "Addy", 1: "Subtracty"};

// Therefore, convert it to a real array
var realArray = $.makeArray(fakeArray)

// Now it can be used reliably with $.map()
$.map(realArray, function(val, i) {
 // do something
});

The translation function that is provided to this method is called for each top-level element in the array or object and is passed two arguments:
The element's value and its index or key within the array or object.

The function can return:

the translated value, which will be mapped to the resulting array
null, to remove the item
an array of values, which will be flattened into the full array

Example 1: A couple examples of using .map()

Javascript

 var arr = ["a", "b", "c", "d", "e"];
 $("div").text(arr.join(", "));

 arr = jQuery.map(arr, function(n, i){
 return (n.toUpperCase() + i);
 });
 $("p").text(arr.join(", "));

 arr = jQuery.map(arr, function (a) {
 return a + a;
 });
 $("span").text(arr.join(", "));

CSS

 div { color:blue; }
 p { color:green; margin:0; }
 span { color:red; }

HTML

<div></div>
 <p></p>

Example 2: Map the original array to a new one and add 4 to each value.

Javascript

$.map([0,1,2], function(n){
 return n + 4;
 });

Results

[4, 5, 6]

Example 3: Maps the original array to a new one and adds 1 to each value if it is bigger then zero, otherwise it's removed.

Javascript

$.map([0,1,2], function(n){
 return n > 0 ? n + 1 : null;
 });

Results

[2, 3]

Example 4: Map the original array to a new one; each element is added with its original value and the value plus one.

Javascript

$.map([0,1,2], function(n){
 return [n, n + 1];
 });

Results

[0, 1, 1, 2, 2, 3]

Example 5: Map the original object to a new array and double each value.

Javascript

var dimensions = { width: 10, height: 15, length: 20 };
dimensions = $.map(dimensions, function(value, index) {
 return value * 2;
});

Results

[20, 30, 40]

Example 6: Map an object's keys to an array.

Javascript

var dimensions = { width: 10, height: 15, length: 20 },
 keys = $.map(dimensions, function(value, index) {
 return index;
 });

Added in version 1.2

Results

["width", "height", "length"]

Example 7: Maps the original array to a new one; each element is squared.

Javascript

$.map([0,1,2,3], function (a) {
 return a * a;
});

Results

[0, 1, 4, 9]

Example 8: Remove items by returning null from the function. This removes any numbers less than 50, and the rest are decreased by 45.

Javascript

$.map([0, 1, 52, 97], function (a) {
 return (a > 50 ? a - 45 : null);
});

Results

[7, 52]

Example 9: Augmenting the resulting array by returning an array inside the function.

Javascript

var array = [0, 1, 52, 97];
array = $.map(array, function(a, index) {
 return [a - 45, index];
});

Results

[-45, 0, -44, 1, 7, 2, 52, 3]

jQuery.makeArray

Convert an array-like object into a true JavaScript array.

jQuery.makeArray(obj):Array

obj:Object Any object to turn into a native Array.

Many methods, both in jQuery and in JavaScript in general, return objects that are array-like. For example, the jQuery factory function $()
returns a jQuery object that has many of the properties of an array (a length, the [] array access operator, etc.), but is not exactly the same as an
array and lacks some of an array's built-in methods (such as .pop() and .reverse()).

Note that after the conversion, any special features the object had (such as the jQuery methods in our example) will no longer be present. The
object is now a plain array.

Example 1: Turn a collection of HTMLElements into an Array of them.

Javascript

 var elems = document.getElementsByTagName("div"); // returns a nodeList
 var arr = jQuery.makeArray(elems);
 arr.reverse(); // use an Array method on list of dom elements
 $(arr).appendTo(document.body);

Added in version 1.0

CSS

 div { color:red; }

HTML

<div>First</div>
 <div>Second</div>
 <div>Third</div>

 <div>Fourth</div>

Example 2: Turn a jQuery object into an array

Javascript

 var obj = $('li');
 var arr = $.makeArray(obj);

Results

(typeof obj === 'object' && obj.jquery) === true;
jQuery.isArray(arr) === true;

jQuery.grep

Finds the elements of an array which satisfy a filter function. The original array is not affected.

jQuery.grep(array, function(elementOfArray, indexInArray), invert):Array

array:Array The array to search through.
function(elementOfArray,
indexInArray):Function

The function to process each item against. The first argument to the function is the item, and
the second argument is the index. The function should return a Boolean value. this will be the
global window object.

invert:Boolean (optional) If "invert" is false, or not provided, then the function returns an array consisting of
all elements for which "callback" returns true. If "invert" is true, then the function returns an
array consisting of all elements for which "callback" returns false.

The $.grep() method removes items from an array as necessary so that all remaining items pass a provided test. The test is a function that is
passed an array item and the index of the item within the array. Only if the test returns true will the item be in the result array.

The filter function will be passed two arguments: the current array item and its index. The filter function must return 'true' to include the item in
the result array.

Example 1: Filters the original array of numbers leaving that are not 5 and have an index greater than 4. Then it removes all 9s.

Javascript

var arr = [1, 9, 3, 8, 6, 1, 5, 9, 4, 7, 3, 8, 6, 9, 1];
$("div").text(arr.join(", "));

arr = jQuery.grep(arr, function(n, i){
 return (n != 5 && i > 4);
});
$("p").text(arr.join(", "));

arr = jQuery.grep(arr, function (a) { return a != 9; });
$("span").text(arr.join(", "));

CSS

 div { color:blue; }
 p { color:green; margin:0; }
 span { color:red; }

Added in version 1.1.4

HTML

<div></div>
 <p></p>

Example 2: Filter an array of numbers to include only numbers bigger then zero.

Javascript

$.grep([0,1,2], function(n,i){
 return n > 0;
 });

Results

[1, 2]

Example 3: Filter an array of numbers to include numbers that are not bigger than zero.

Javascript

$.grep([0,1,2], function(n,i){
 return n > 0;
},true);

Results

[0]

jQuery.extend

Merge the contents of two or more objects together into the first object.

jQuery.extend(deep, target, object1, objectN):Object

deep:Boolean (optional) If true, the merge becomes recursive (aka. deep copy).
target:Object The object to extend. It will receive the new properties.
object1:Object An object containing additional properties to merge in.
objectN:Object (optional) Additional objects containing properties to merge in.

When we supply two or more objects to $.extend(), properties from all of the objects are added to the target object.

If only one argument is supplied to $.extend(), this means the target argument was omitted. In this case, the jQuery object itself is assumed to
be the target. By doing this, we can add new functions to the jQuery namespace. This can be useful for plugin authors wishing to add new
methods to JQuery.

Keep in mind that the target object (first argument) will be modified, and will also be returned from $.extend(). If, however, we want to
preserve both of the original objects, we can do so by passing an empty object as the target:

var object = $.extend({}, object1, object2);

The merge performed by $.extend() is not recursive by default; if a property of the first object is itself an object or array, it will be completely
overwritten by a property with the same key in the second object. The values are not merged. This can be seen in the example below by
examining the value of banana. However, by passing true for the first function argument, objects will be recursively merged.

Undefined properties are not copied. However, properties inherited from the object's prototype will be copied over. For performance reasons,
properties that have values of built-in JavaScript types such as Date or RegExp are not re-constructed, and will appear as plain Objects in the
resulting object or array.

Note: When performing a deep extend, Object and Array are extended, however primitive types such string, boolean and number
are not. For specific needs that fall outside of this behaviour, it is recommended to write a custom extend method as this will be
significantly faster from a performance perspective.

Example 1: Merge two objects, modifying the first.

Javascript

var object1 = {
 apple: 0,
 banana: {weight: 52, price: 100},
 cherry: 97
};
var object2 = {
 banana: {price: 200},
 durian: 100
};

/* merge object2 into object1 */
$.extend(object1, object2);

var printObj = function(obj) {
 var arr = [];
 $.each(obj, function(key, val) {
 var next = key + ": ";
 next += $.isPlainObject(val) ? printObj(val) : val;
 arr.push(next);
 });
 return "{ " + arr.join(", ") + " }";
};

$("#log").append(printObj(object1));

HTML

<div id="log"></div>

Example 2: Merge two objects recursively, modifying the first.

Javascript

var object1 = {
 apple: 0,
 banana: {weight: 52, price: 100},
 cherry: 97
};
var object2 = {
 banana: {price: 200},
 durian: 100
};

/* merge object2 into object1, recursively */
$.extend(true, object1, object2);

var printObj = function(obj) {
 var arr = [];
 $.each(obj, function(key, val) {
 var next = key + ": ";
 next += $.isPlainObject(val) ? printObj(val) : val;
 arr.push(next);
 });
 return "{ " + arr.join(", ") + " }";
};

$("#log").append(printObj(object1));

HTML

<div id="log"></div>

Example 3: Merge defaults and options, without modifying the defaults. This is a common plugin development pattern.

Added in version 1.0

Javascript

var defaults = { validate: false, limit: 5, name: "foo" };
var options = { validate: true, name: "bar" };

/* merge defaults and options, without modifying defaults */
var settings = $.extend({}, defaults, options);

var printObj = function(obj) {
 var arr = [];
 $.each(obj, function(key, val) {
 var next = key + ": ";
 next += $.isPlainObject(val) ? printObj(val) : val;
 arr.push(next);
 });
 return "{ " + arr.join(", ") + " }";
};

$("#log").append("<div>settings -- " + printObj(settings) + "</div>");
$("#log").append("<div>options -- " + printObj(options) + "</div>");

HTML

<div id="log"></div>

jQuery.each

A generic iterator function, which can be used to seamlessly iterate over both objects and arrays. Arrays and array-like objects with a length
property (such as a function's arguments object) are iterated by numeric index, from 0 to length-1. Other objects are iterated via their named
properties.

jQuery.each(collection, callback(indexInArray, valueOfElement)):Object

collection:Object The object or array to iterate over.
callback(indexInArray,
valueOfElement):Function The function that will be executed on every object.

The $.each() function is not the same as $(selector).each(), which is used to iterate, exclusively, over a jQuery object. The $.each() function
can be used to iterate over any collection, whether it is a map (JavaScript object) or an array. In the case of an array, the callback is passed an
array index and a corresponding array value each time. (The value can also be accessed through the this keyword, but Javascript will always
wrap the this value as an Object even if it is a simple string or number value.) The method returns its first argument, the object that was
iterated.

$.each([52, 97], function(index, value) {
 alert(index + ': ' + value);
});

This produces two messages:

0: 52

1: 97

If a map is used as the collection, the callback is passed a key-value pair each time:

var map = {
 'flammable': 'inflammable',
 'duh': 'no duh'
};
$.each(map, function(key, value) {
 alert(key + ': ' + value);
});

Once again, this produces two messages:

flammable: inflammable

duh: no duh

We can break the $.each() loop at a particular iteration by making the callback function return false. Returning non-false is the same as a
continue statement in a for loop; it will skip immediately to the next iteration.

Added in version 1.0

Example 1: Iterates through the array displaying each number as both a word and numeral

Javascript

 var arr = ["one", "two", "three", "four", "five"];
 var obj = { one:1, two:2, three:3, four:4, five:5 };

 jQuery.each(arr, function() {
 $("#" + this).text("Mine is " + this + ".");
 return (this != "three"); // will stop running after "three"
 });

 jQuery.each(obj, function(i, val) {
 $("#" + i).append(document.createTextNode(" - " + val));
 });

CSS

 div { color:blue; }
 div#five { color:red; }

HTML

 <div id="one"></div>
 <div id="two"></div>
 <div id="three"></div>
 <div id="four"></div>
 <div id="five"></div>

Example 2: Iterates over items in an array, accessing both the current item and its index.

Javascript

$.each(['a','b','c'], function(i, l){
 alert("Index #" + i + ": " + l);
 });

Example 3: Iterates over the properties in an object, accessing both the current item and its key.

Javascript

$.each({ name: "John", lang: "JS" }, function(k, v){
 alert("Key: " + k + ", Value: " + v);
 });

jQuery.boxModel

Deprecated in jQuery 1.3 (see jQuery.support). States if the current page, in the user's browser, is being rendered using the W3C CSS Box
Model.

Example 1: Returns the box model for the iframe.

Javascript

 $("p").html("The box model for this iframe is: " +
 jQuery.boxModel + "");

CSS

 p { color:blue; margin:20px; }
 span { color:red; }

Added in version 1.3

HTML

<p>
 </p>

Example 2: Returns false if the page is in Quirks Mode in Internet Explorer

Javascript

$.boxModel

Results

false

jQuery.support

A collection of properties that represent the presence of different browser features or bugs.

Rather than using $.browser to detect the current user agent and alter the page presentation based on which browser is running, it is a good
practice to perform feature detection. This means that prior to executing code which relies on a browser feature, we test to ensure that the
feature works properly. To make this process simpler, jQuery performs many such tests and makes the results available to us as properties of the
jQuery.support object.

The values of all the support properties are determined using feature detection (and do not use any form of browser sniffing).

Following are a few resources that explain how feature detection works:

http://peter.michaux.ca/articles/feature-detection-state-of-the-art-browser-scripting
http://www.jibbering.com/faq/faq_notes/not_browser_detect.html
http://yura.thinkweb2.com/cft/

While jQuery includes a number of properties, developers should feel free to add their own as their needs dictate. Many of the jQuery.support
properties are rather low-level, so they are most useful for plugin and jQuery core development, rather than general day-to-day development.
Since jQuery requires these tests internally, they must be performed on every page load; for that reason this list is kept short and limited to
features needed by jQuery itself.

The tests included in jQuery.support are as follows:

ajax is equal to true if a browser is able to create an XMLHttpRequest object.
boxModel is equal to true if the page is rendering according to the W3C CSS Box Model (is currently false in IE 6 and 7 when they are in
Quirks Mode). This property is null until document ready occurs.
changeBubbles is equal to true if the change event bubbles up the DOM tree, as required by the W3C DOM event model. (It is currently
false in IE, and jQuery simulates bubbling).
checkClone is equal to true if a browser correctly clones the checked state of radio buttons or checkboxes in document fragments.
checkOn is equal to true if the value of a checkbox defaults to "on" when no value is specified.
cors is equal to true if a browser can create an XMLHttpRequest object and if that XMLHttpRequest object has a withCredentials property.
To enable cross-domain requests in environments that do not support cors yet but do allow cross-domain XHR requests (windows gadget,
etc), set $.support.cors = true;. CORS WD
cssFloat is equal to true if the name of the property containing the CSS float value is .cssFloat, as defined in the CSS Spec. (It is
currently false in IE, it uses styleFloat instead).
hrefNormalized is equal to true if the .getAttribute() method retrieves the href attribute of elements unchanged, rather than
normalizing it to a fully-qualified URL. (It is currently false in IE, the URLs are normalized).
DOM l3 spec
htmlSerialize is equal to true if the browser is able to serialize/insert <link> elements using the .innerHTML property of elements. (is
currently false in IE).
HTML5 WD
leadingWhitespace is equal to true if the browser inserts content with .innerHTML exactly as providedâ€”specifically, if leading
whitespace characters are preserved. (It is currently false in IE 6-8).
HTML5 WD
noCloneChecked is equal to true if cloned DOM elements copy over the state of the .checked expando. (It is currently false in IE). (Added
in jQuery 1.5.1)
noCloneEvent is equal to true if cloned DOM elements are created without event handlers (that is, if the event handlers on the source
element are not cloned). (It is currently false in IE).
DOM l2 spec
opacity is equal to true if a browser can properly interpret the opacity style property. (It is currently false in IE, it uses alpha filters
instead).

CSS3 spec
optDisabled is equal to true if option elements within disabled select elements are not automatically marked as disabled.
HTML5 WD
optSelected is equal to true if an <option> element that is selected by default has a working selected property.
HTML5 WD
scriptEval() is equal to true if inline scripts are automatically evaluated and executed when inserted into the document using standard
DOM manipulation methods such as .appendChild() and .createTextNode(). (It is currently false in IE, it uses .text to insert executable
scripts).
Note: No longer supported; removed in jQuery 1.6. Prior to jQuery 1.5.1, the scriptEval() method was the static scriptEval property.
The change to a method allowed the test to be deferred until first use to prevent content security policy inline-script violations.
HTML5 WD
style is equal to true if inline styles for an element can be accessed through the DOM attribute called style, as required by the DOM
Level 2 specification. In this case, .getAttribute('style') can retrieve this value; in Internet Explorer, .cssText is used for this purpose.
DOM l2 Style spec
submitBubbles is equal to true if the submit event bubbles up the DOM tree, as required by the W3C DOM event model. (It is currently
false in IE, and jQuery simulates bubbling).
tbody is equal to true if an empty <table> element can exist without a <tbody> element. According to the HTML specification, this
sub-element is optional, so the property should be true in a fully-compliant browser. If false, we must account for the possibility of the
browser injecting <tbody> tags implicitly. (It is currently false in IE, which automatically inserts tbody if it is not present in a string
assigned to innerHTML).
HTML5 spec

Example 1: Returns the box model for the iframe.

Javascript

 $("p").html("This frame uses the W3C box model: " +
 jQuery.support.boxModel + "");

CSS

 p { color:blue; margin:20px; }
 span { color:red; }

HTML

<p>
 </p>

Example 2: Returns false if the page is in QuirksMode in Internet Explorer

Javascript

jQuery.support.boxModel

Results

false

Plugin Authoring

